МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Владивостокский государственный университет экономики и сервиса»

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ЕН.03 ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

по специальности

09.02.07 Информационные системы и программирование

Очная форма обучения

Владивосток 2021

Рабочая программа учебной дисциплины ЕН.03 Теория вероятностей и математическая статистика разработана на основе Федерального государственного образовательного стандарта по специальности среднего профессионального образования программы подготовки специалистов среднего звена 09.02.07 Информационные системы и программирование от 09 декабря 2016 г. № 1547
Разработчик: Суворова Дарья Константиновна, преподаватель Академического колледжа ВГУЭС
Рассмотрено и одобрено на заседании цикловой методической комиссии Протокол № 10_ от «_12_»0520_21_ г.
Председатель ЦМК А.Д. Гусакова А.Д. Гусакова

СОДЕРЖАНИЕ

1.	Общие сведения	4
	Структура и содержание учебной дисциплины	
	Условия реализации программы дисциплины	
	Контроль результатов освоения учебной дисциплины	

1. Общие сведения

1.1. Общая характеристика программы учебной дисциплины

По государственному образовательному стандарту среднего профессионального образования дисциплина «Теория вероятностей и математическая статистика» включена в профессиональный учебный цикл математических и общих естественнонаучных дисциплин (ЕН.03)

1.2. Цель и планируемые результаты освоения дисциплины:

Код	Умения	Знания
Код ОК 01 ОК 02 ОК 04 ОК 05 ОК 09 ОК 10	Умения Применять стандартные методы и модели к решению вероятностных и статистических задач. Использовать расчетные формулы, таблицы, графики при решении статистических задач. Применять современные пакеты прикладных программ многомерного статистического анализа.	Элементы комбинаторики. Понятие случайного события, классическое определение вероятности, вычисление вероятностей событий с использованием элементов комбинаторики, геометрическую вероятность. Алгебру событий, теоремы умножения и сложения вероятностей, формулу полной вероятности. Схему и формулу Бернулли, приближенные формулы в схеме Бернулли. Формулу(теорему) Байеса. Понятия случайной величины, дискретной случайной величины, ее распределение и характеристики, непрерывной случайной величины,
		ее распределение и характеристики. Законы распределения непрерывных случайных величин.
		Центральную предельную теорему, выборочный метод математической статистики, характеристики выборки.
		Понятие вероятности и частоты.

2. Структура и содержание учебной дисциплины

2.1. Объем учебной дисциплины и виды учебной работы

Вид учебной работы		
	часов	
Объем учебной дисциплины	138	
Работа обучающихся во взаимодействии с преподавателем	128	
в том числе:		
теоретическое обучение	64	
практические занятия	64	
Консультации	2	
Самостоятельная работа	2	
Промежуточная аттестация	6	
Итоговая аттестация в форме: контрольной работы – 3 семестр		
экзамена – 4 семестр		

2.2. Тематический план и содержание учебной дисциплины «ЕН.03 Теория вероятностей и математическая статистика»

Наименование разделов и тем	Содержание учебного материала и формы организации деятельности обучающихся	Объем в ча- сах	Коды компетенций, формированию которых способствует элемент программы
1	2	3	4
Тема 1. Элементы комби- наторики	Содержание учебного материала 1. Введение в теорию вероятностей 2. Упорядоченные выборки (размещения). Перестановки 3. Неупорядоченные выборки (сочетания) Практические занятия: подсчёт числа комбинаций.	6	OK 01 OK 02 OK 04 OK 05 OK 09 OK 10
Тема 2. Основы теории ве- роятностей	Содержание учебного материала 1. Случайные события. Классическое определение вероятностей 2. Формула полной вероятности. Формула Байеса 3. Вычисление вероятностей сложных событий 4. Схемы Бернулли. Формула Бернулли 5. Вычисление вероятностей событий в схеме Бернулли Практические занятия: Вычисление вероятностей с использованием формул комбинаторики. Вычисление вероятностей сложных событий. Самостоятельная работа обучающихся: ИДЗ 1 (решение задач теории вероятностей)	16	OK 01 OK 02 OK 04 OK 05 OK 09 OK 10
Тема 3. Дискретные случайные величины (ДСВ)	Содержание учебного материала 1. Дискретная случайная величина (далее - ДСВ) 2. Графическое изображение распределения ДСВ. Функции от ДСВ 3. Математическое ожидание, дисперсия и среднеквадратическое отклонение ДСВ 4. Понятие биномиального распределения, характеристики 5. Понятие геометрического распределения, характеристики Практические занятия: Построение закона распределения и функция распределения ДСВ. Вычисление основных числовых характеристик ДСВ.	14	OK 01 OK 02 OK 04 OK 05 OK 09 OK 10
Тема 4. Непрерывные слу- чайные величины	Содержание учебного материала 1. Понятие НСВ. Равномерно распределенная НСВ. Геометрическое определение вероятности	12	OK 01 OK 02 OK 04

(далее - НСВ)	2. Центральная предельная теорема Практические занятия: Вычисление числовых характеристик НСВ. Построение функции плотности и интегральной функции распределения. Самостоятельная работа обучающихся: ИДЗ 2 (решение задач ДСВ, НСВ)	12	OK 05 OK 09 OK 10
Тема 5. Математическая статистика	Содержание учебного материала 1. Задачи и методы математической статистики. Виды выборки 2. Числовые характеристики вариационного ряда Практические занятия: Построение эмпирической функции распределения. Вычисление числовых характеристик выборки.	16	OK 01 OK 02 OK 04 OK 05 OK 09 OK 10
Всего	Точечные и интервальные оценки.	138	
Теоретическое обуче	ение	64	
Практические занятия			
Консультации		2	
Самостоятельная ра	бота	2	
Промежуточная атто	естация	6	

3. УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

3.1. Для реализации программы учебной дисциплины «ЕН.03 Теория вероятностей и математическая статистика» образовательной организации, предусмотрено наличие следующих специальных помещений:

Учебная аудитория для проведения учебных занятий (уроки, лекции, практические занятия, лабораторные занятия, семинарские занятия, курсовое проектирование), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Кабинет математических дисциплин (ауд 1510).

Количество посадочных мест - 36, стол для преподавателя 1 шт., стул для преподавателя 1 шт., проектор Full HD 1 шт., экран 1 шт., мультимедийное оборудование 1 шт., доска маркерная, штангельциркуль, измерительный инструмент, комплекты плакатов.

Помещение для самостоятельной работы обучающихся (ауд 1406)

Рабочие места на базе вычислительной техники с установленным офисным пакетом с возможностью подключения к сети "Интернет" и обеспечением доступа в электронную информационно-образовательную среду организации. а также комплектом оборудования для печати: персональные компьютеры; посадочных мест — $30\,$ шт. Стол преподавателя - $1\,$ шт; стул преподавателя - $1\,$ шт; доска маркерная - $1\,$ шт; мультимедийный проектор с экраном.

3.2. Информационное обеспечение реализации программы

Для реализации программы учебной дисциплины библиотечный фонд образовательной организации укомплектован печатными и электронными изданиями. Основная литература:

- 1. Гутова, С. Г. Теория вероятностей и математическая статистика: учебное пособие / С. Г. Гутова. Кемерово: КемГУ, 2016. 216 с. ISBN 978-5-8353-1914-5. Текст: электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/92380
- 2. Малугин, В. А. Теория вероятностей и математическая статистика: учебник и практикум для среднего профессионального образования / В. А. Малугин. Москва: Издательство Юрайт, 2018. 470 с. (Профессиональное образование). ISBN 978-5-534-06572-5. Текст: электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/412061.
- 3. Энатская, Н. Ю. Теория вероятностей и математическая статистика: учебник и практикум для среднего профессионального образования / Н. Ю. Энатская, Е. Р. Хакимуллин. Москва: Издательство Юрайт, 2020. 399 с. (Профессиональное образование). ISBN 978-5-534-11917-6. Текст: электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/450931.

Дополнительная литература:

- 1. Васильев, А. А. Теория вероятностей и математическая статистика: учебник и практикум для среднего профессионального образования / А. А. Васильев. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2020. 232 с. (Профессиональное образование). ISBN 978-5-534-09115-1. Текст: электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/453916.
- 2. Далингер, В. А. Теория вероятностей и математическая статистика с применением Mathcad: учебник и практикум для среднего профессионального образования / В. А. Далингер, С. Д. Симонженков, Б. С. Галюкшов. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2020. 145 с. (Профессиональное образование). —

- ISBN 978-5-534-10081-5. Текст : электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/452495.
- 3. *Калинина, В. Н.* Теория вероятностей и математическая статистика: учебник для среднего профессионального образования / В. Н. Калинина. 2-е изд., перераб. и доп. Москва: Издательство Юрайт, 2020. 472 с. (Профессиональное образование). ISBN 978-5-9916-8773-7. Текст: электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/451182.

4. Контроль результатов освоения учебной дисциплины «ЕН.03 Теория вероятностей и математическая статистика»

Контроль и оценка результатов освоения дисциплины осуществляется преподавателем в процессе проведения практических занятий, тестирования, а также выполнения обучающимися типовых индивидуальных заданий.

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Владивостокский государственный университет экономики и сервиса»

КОМПЛЕКТ КОНТРОЛЬНО-ОЦЕНОЧНЫХ СРЕДСТВ

ЕН.03 Теория вероятностей и математическая статистика

09.02.07 Информационные системы и программирование

Форма обучения очная

Владивосток 2021

Комплект контрольно-оценочных средств разработан на основе рабочей программы учебной дисциплины Федерального государственного образовательного стандарта по специальности программы подготовки специалистов среднего звена 09.02.07 Информационные системы и программирование, 09.12.2016, № 1547
Составитель: Суворова Дарья Константиновна, преподаватель Академического колледжа ВГУЭС
Рассмотрено и одобрено на заседании цикловой методической комиссии Протокол № $\underline{10}$ от « $\underline{12}$ » $\underline{05}$ $\underline{20}$ $\underline{21}$ г.
Председатель ЦМК А.Д. Гусакова А.Д. Гусакова

1 Общие сведения

Контрольно-оценочные средства (далее — КОС) предназначен для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины ЕН.03 Теория вероятностей и математическая статистика.

КОС разработаны на основании:

- основной образовательной программы СПО по специальности 09.02.07 Информационные системы и программирование;
- рабочей программы учебной дисциплины EH.03 Теория вероятностей и математическая статистика.

Формой итоговой аттестации является экзамен.

Код ОК, ПК	Код результата обучения	Наименование
	У1	Уметь применять стандартные методы и модели к решению вероятностных и статистических задач
	У2	Уметь использовать расчетные формулы, таблицы, графики при решении статистических задач
	У3	Уметь применять современные пакеты прикладных программ многомерного статистического анализа
	31	Знать элементы комбинаторики
OK 01 OK 02	K 02 K 04 K 05	Знать понятие случайного события, классическое определение вероятности, вычисление вероятностей событий с использованием элементов комбинаторики, геометрическую вероятность
OK 04 OK 05		Знать алгебру событий, теоремы умножения и сложения вероятностей, формулу полной вероятности
OK 09 OK 10	34	Знать схему и формулу Бернулли, приближенные формулы в схеме Бернулли. Формулу(теорему) Байеса
	35	Знать понятие случайной величины, дискретной случайной величины, ее распределение и характеристики, непрерывной случайной величины, ее распределение и характеристики
	36	Знать законы распределения непрерывных случайных величин
	37	Знать центральную предельную теорему, выборочный метод математической статистики, характеристики выборки
	38	Знать понятие вероятности и частоты

2 Распределение типов контрольных заданий по элементам знаний и умений, контролируемых в процессе изучения

Текущая аттестация студентов. Текущая аттестация студентов по дисциплине «Теория вероятностей и математическая статистика» приводится в соответствии с локальными нормативными актами ВГУЭС и является обязательной.

Текущая аттестация по дисциплине «Теория вероятностей и математическая статистика» проводится в форме контрольных мероприятий *(тестирование)* по оцениванию фактических результатов обучения студентов и осуществляется ведущим преподавателем.

Объектами оценивания выступают:

- учебная дисциплина (активность на занятиях, своевременность выполнения различных видов заданий, посещаемость всех видов занятий по аттестуемой дисциплине);
 - степень усвоения теоретических знаний;
- уровень овладения практическими умениями и навыками по всем видам учебной работы;
 - результаты самостоятельной работы.

Текущий контроль в форме тестирования осуществляется на каждом практическом занятии по тематике предшествующего занятия.

Оценочные средства для текущей аттестации

- 1. Указать верное определение. Суммой двух событий называется:
 - а) Новое событие, состоящее в том, что происходят оба события одновременно;
- б) Новое событие, состоящее в том, что происходит или первое, или второе, или оба вместе;
 - в) Новое событие, состоящее в том, что происходит одно, но не происходит другое.
- 2. Указать верное определение. Произведением двух событий называется:
 - а) Новое событие, состоящее в том, что происходят оба события одновременно;
- б) Новое событие, состоящее в том, что происходит или первое, или второе, или оба вместе;
 - в) Новое событие, состоящее в том, что происходит одно, но не происходит другое.
- 3. Указать верное определение. Вероятностью события называется:
- а) Произведение числа исходов, благоприятствующих появлению события на общее число исходов;
- б) Сумма числа исходов, благоприятствующих появлению события и общего числа исходов;
- в) Отношение числа исходов, благоприятствующих появлению события к общему числу исходов;
- 4. Указать верное утверждение. Вероятность невозможного события:
 - а) больше нуля и меньше единицы;
 - б) равна нулю;
 - в) равна единице;
- 5. Указать верное утверждение. Вероятность достоверного события:
 - а) больше нуля и меньше единицы;
 - б) равна нулю;
 - в) равна единице;
- 6. Указать верное свойство. Вероятность случайного события:
 - а) больше нуля и меньше единицы;
 - б) равна нулю;
 - в) равна единице;
- 7. Указать правильное утверждение:
 - а) Вероятность суммы событий равна сумме вероятностей этих событий;
- б) Вероятность суммы независимых событий равна сумме вероятностей этих событий;
- в) Вероятность суммы несовместных событий равна сумме вероятностей этих событий;

- 8. Указать правильное утверждение:
- а) Вероятность произведения событий равна произведению вероятностей этих событий;
- б) Вероятность произведения независимых событий равна произведению вероятностей этих событий;
- в) Вероятность произведения несовместных событий равна произведению вероятностей этих событий;
- 9. Указать верное определение. Событие это:
 - а) Элементарный исход;
 - б) Пространство элементарных исходов;
 - в) Подмножество множества элементарных исходов.
- 10. Указать правильный ответ. Какие события называются гипотезами?
 - а) любые попарно несовместные события;
- б) попарно несовместные события, объединение которых образует достоверное событие;
 - в) пространство элементарных событий.
- 11. Указать правильный ответ Формулы Байеса определяют:
 - а) априорную вероятность гипотезы,
 - б) апостериорную вероятность гипотезы,
 - в) вероятность гипотезы.
- 12. Указать **верное** свойство. Функция распределения F(x) случайной величины X является:
 - а) невозрастающей;
 - б) неубывающей;
 - в) произвольного вида.
- 13. Указать **правильный** ответ. Какая из указанных функций может быть плотностью вероятности непрерывной случайной величины:

a)
$$f(x) = \begin{cases} A\sin 2x, & x \in [-\frac{\pi}{4}; \frac{\pi}{4}] \\ 0, & x \notin [-\frac{\pi}{4}; \frac{\pi}{4}], \end{cases}$$

6)
$$f(x) = \begin{cases} A \sin x, & x \in [0; \frac{\pi}{2}] \\ 0, & x \notin [0; \frac{\pi}{2}] \end{cases}$$

B) $f(x) = \begin{cases} A \sin 3x, & x \in [0; \frac{2\pi}{3}] \\ 0, & x \notin [0; \frac{2\pi}{3}] \end{cases}$

- $[0, x \neq [0, \frac{\pi}{3}]]$ 14. Указать **верное** свойство. Равенство M(X+Y) = MX + MY справедливо для случайных
 - а) независимых;
 - б) зависимых;
 - в) всех.

величин:

- 15. Указать **верное** свойство. Равенство D(X+Y) = DX + DY справедливо для случайных величин:
 - а) независимых;
 - б) зависимых;

- в) всех.
- 16. Указать **правильное** заключение. Из того, что корреляционный момент для двух случайных величин X и Y равен нулю следует:
 - а) отсутствует функциональная зависимость между X и Y;
 - б) величины Х и Ү независимы;
 - в) отсутствует линейная корреляция между X и Y;
- 17. Указать неверное утверждение. Основные требования к выборке:
 - а) репрезентативность;
 - б) случайность;
 - в) бесповторность;
- 18. Указать **верное** утверждение. Найти вероятность того, что в схеме Бернулли из n испытаний, событие А появится k раз -это:
 - а) первая задача схемы Бернулли;
 - б) вторая задача схемы Бернулли;
 - в) третья задача схемы Бернулли.
- 19. Указать **верную** формулу. При больших значениях n и очень малой вероятности появления события A в одном испытании -p схемы Бернулли, вероятность появления события A k раз определяется по формуле:

a)
$$P_n(k) = C_n^k p^k q^{n-k}$$

$$\mathfrak{G}) P_n(\lambda) = \frac{\lambda^k}{k!} e^{-\lambda}$$

_{B)}
$$P_n(k) = \frac{1}{\sqrt{npq}} e^{-\frac{x_k^2}{2}}$$

- 20. Указать правильный ответ. Интегральная теорема Муавра-Лапласа решает:
 - а) первую задачу схемы Бернулли;
 - б) вторую задачу схемы Бернулли;
 - в) первую и вторую задачи схемы Бернулли.
- 21. Указать правильный ответ. Дискретную случайную величину задают:
 - а) указывая её вероятности;
 - б) указывая её закон распределения;
- в) поставив каждому элементарному исходу $\varpi \in \Omega$ в соответствие действительное число.
- 22. Указать верное свойство. Для плотности распределения вероятности справедливо:

a)
$$f(x) > 0$$

$$6) \int_{0}^{\infty} f(x) dx = 1$$

$$F(x) = \int_{0}^{x} f(x)dx$$

- 23. Указать верное определение. Математическое ожидание случайной величины это:
 - а) начальный момент первого порядка;
 - б) центральный момент первого порядка;
 - в) произвольный момент первого порядка.
- 24. Указать верное определение. Дисперсия случайной величины- это:
 - а) начальный момент второго порядка;
 - б) центральный момент второго порядка;
 - в) произвольный момент второго порядка.

25.	Указать	верную	формулу.	Формула	для ві	ычисления	среднего	квадратического	откло-
неі	ния случа	айной вел	іичины:						

- 26. Указать верное определение. Мода распределения –это:
 - а) значение случайной величины при котором вероятность равняется 0,5;
- б) значение случайной величины при котором либо вероятность, либо функция плотности достигают максимального значения;
 - в) значение случайной величины при котором вероятность равняется 0.
- 27. Указать неверное утверждение. Основные требования при построении группированного вариационного ряда:
- а) Длину интервалов можно выбирать различной, лишь бы не было пустых интервалов.
- б) Следует разбивать вариационный ряд так, чтобы число промежутков было на меньше 5-6 и не больше 20-25.
- в) Использовать формулу Стерджеса для определения количества интерваловразрядов.
- 28. Указать верную формулу. Дисперсия случайной величины вычисляется по формуле:

a)
$$DX = M(X - MX)$$
 6) $DX = M(X - MX)^2$ B) $DX = M(X - MX)^3$

29. Указать верную формулу. Плотность нормального распределения случайной величины определяется по формуле:

a)
$$f(x) = \frac{x}{\sigma^2} e^{-\frac{x^2}{2\sigma^2}}$$
 6) $f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-a)^2}{2\sigma^2}}$ B) $f(x) = \lambda e^{-\lambda x}$

30. Указать правильный ответ Математическое ожидание случайной величины, распре-

деленной по нормальному закону распределения $f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-a)^2}{2\sigma^2}}$, равно:

a)
$$MX = \sigma$$
. 6) $MX = a$. B) $MX = \sigma^2$.

а) $MX = \sigma$. б) MX = a. в) $MX = \sigma^2$. 31. Указать **правильный** ответ. Математическое ожидание случайной величины, распределенной по показательному закону распределения $f(x) = \lambda e^{-\lambda x}$, $x \ge 0$, равно:

a)
$$MX = \lambda$$
. 6) $MX = \frac{1}{\lambda}$. B) $MX = \frac{1}{\lambda^2}$.

32. Указать правильный ответ. Дисперсия случайной величины, распределенной по показательному закону распределения $f(x) = \lambda e^{-\lambda x}$, $x \ge 0$, равна:

a)
$$DX = \lambda$$
. 6) $DX = \frac{1}{\lambda}$. B) $DX = \frac{1}{\lambda^2}$.

- 33. Указать правильный ответ. Пусть случайная величина Х-число испытаний, которые необходимо провести до первого появления события А, при условии независимости испытаний и постоянной вероятности появления события А в одном испытании. Тогда случайная величина Х подчинена:
 - а) распределению Бернулли;
 - б) геометрическому распределению,
 - в) гипергеометрическому распределению.
- 34. Указать верную формулу. Для равномерного распределения

$$f(x) = \begin{cases} \frac{1}{b-a}, & x \in [a, b] \\ 0, & x \notin [a, b] \end{cases}$$
 математическое ожидание определяется по формуле:

a)
$$MX = \frac{a+b}{2}$$
. 6) $MX = \frac{(b-a)^2}{12}$. B) $MX = \frac{(b-a)}{12}$.

35. Указать верную формулу. Для равномерного распределения

35. Указать **верную** формулу. Для равномерного распределения
$$f(x) = \begin{cases} \frac{1}{b-a}, & x \in [a, b] \\ 0, & x \notin [a, b] \end{cases}$$
 дисперсия определяется по формуле:

a)
$$DX = \frac{a+b}{2}$$
. 6) $DX = \frac{(b-a)^2}{12}$. B) $DX = \frac{(b-a)}{12}$.

- 36. Указать неверное утверждение. При характеристике выборки используют:
 - а) среднее арифметическое,
 - б) среднее статистическое;
 - в) среднее квадратическое.
- 37. Указать **верное** утверждение. Равенство $M(X \cdot Y) = MX \cdot MY$ справедливо для случайных величин:
 - a) Bcex; б) зависимых; в) независимых:
- 38. Указать неверное утверждение. Свойства выборочной дисперсии:
- а) если все варианты увеличить в одно и тоже число раз, то и дисперсия увеличится в такое же число раз.
 - б) дисперсия постоянной равняется нулю.
- в) если все варианты увеличить на одно и тоже число, то выборочная дисперсия не изменится.
- 39. Указать верное утверждение. Оценкой параметров называют:
- а) Представление наблюдений в качестве независимых случайных величин, имеющих один и тот же закон распределения.
 - б) совокупность результатов наблюдений;
 - в) всякую функцию результатов наблюдения.
- 40. Указать верное утверждение. Оценки параметров распределений обладают свойством:
 - а) несмещенности;
 - б) значимости;
 - в) важности.
- 41. Указать неверное утверждение.
 - а) Метод максимального правдоподобия используется для получения оценок;
 - б) Выборочная дисперсия является смещенной оценкой для дисперсии;
- в) В качестве статистических оценок параметров используются несмещённые, несостоятельные, эффективные оценки.
- 42. Указать неверное утверждение:
- а) Вероятность появления хотя бы одного из n независимых в совокупности событий, равна разности между единицей и произведением вероятностей противоположных событий;
- б) Если А и В наблюдаемые события, то вероятность события В, вычисленная в предположении, что событие A произошло(P(A) > 0), называется условной вероятностью события В и определяется по формуле: $P_{A}(B) = \frac{P(A \cap B)}{P(A)}$.
 - в) Формула полной вероятность имеет вид: $P_{\!{}_{\! A}}(H_i) = \frac{P(H_i) P_{\!{}_{\! H_i}}(A)}{\displaystyle \sum^n P(H_i) P_{\!{}_{\! H_i}}(A)} \, .$
- 43. Указать неверное утверждение. Для функции распределения двумерной случайной величины F(x, y) справедливы свойства:
 - a) $0 \le F(x, y) \le 1$; 6) $F(-\infty, -\infty) = 0$; B) $F(+\infty, +\infty) = 0$.

- 44. Указать неверное утверждение:
- а) По многомерной функции распределения всегда можно найти одномерные (маргинальные) распределения отдельных компонент.
- б) По одномерным (маргинальным) распределениям отдельных компонент всегда можно найти многомерную функцию распределения.
- в) По многомерной функции плотности всегда можно найти одномерные (маргинальные) плотности распределения отдельных компонент.
- 45. Указать **правильное** утверждение. Дисперсия разности двух случайных величин определяется по формуле:
 - a) D(X-Y) = DX DY;
 - 6) $D(X-Y) = DX 2K_{yy} + DY$;
 - B) $D(X-Y) = DX + 2K_{xy} + DY$.
- 46. Указать неверное утверждение. Формула вычисления совместной плотности:
 - a) $f(x, y) = f_X(x) \cdot f_Y(y)$;

$$f(x, y) = f_X(x) \cdot f_Y(\frac{y}{x})$$

$$f(x, y) = f_Y(y) \cdot f_X(x/y)$$

- 47. Указать **неверное** утверждение. Случайные величины X и Y называются независимыми, если:
- а) Закон распределения случайной величины X не зависит от того, какое значение приняла случайная величина Y.
 - 6) $f(x, y) = f_X(x) \cdot f_Y(y)$,
 - в) коэффициент корреляции между случайными величинами X и Y равен нулю.
- 48. Указать **правильный** ответ. Формула $f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \int_{-\infty}^{+\infty} f_Y(y) \cdot f_X(x/y) dy$ является:
 - а) аналогом формулы Байеса для непрерывных случайных величин;
 - б) аналогом формулы полной вероятности для непрерывных случайных величин;
- в) аналогом формулы произведения вероятностей независимых событий для непрерывных случайных величин.
- 49. Указать неверное утверждение:
 - а) Распределение χ^2 (хи квадрат) зависит от числа степеней свободы;
 - б) Распределение Стьюдента зависит от числа степеней свободы;
 - в) Нормальное распределение зависит от числа степеней свободы.
- 50. Указать неверное определение:
- а) Начальным моментом $m_{k,s}$ порядка k+s двумерной случайной величины (X,Y) называется математическое ожидание произведения X^k на Y^s , т.е. $m_{k,s} = M(X^k \cdot Y^s)$
- б) Центральным моментом $M_{k,s}$ порядка k+s двумерной случайной величины (X,Y) называется математическое ожидание произведения центрированных \dot{X}^k на \dot{Y}^s , т.е. $M_{k,s} = M(\dot{X}^k \cdot \dot{Y}^s)$)
- в) Корреляционным моментом двумерной случайной величины (X,Y) называется математическое ожидание произведения X на Y , т.е. $K_{XY} = M(X \cdot Y)$

51. Указать правильный ответ. Дисперсия случайной величины, распределенной по нор-

мальному закону распределения $f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-a)^2}{2\sigma^2}}$, равна:

- a) $DX = \sigma$. 6) DX = a. B) $DX = \sigma^2$.
- 52. Указать неверное утверждение. Простейшими задачами математической статистики являются:
- а) выборка и группировка статистических данных, полученных в результате эксперимента;
 - б) определение параметров распределения, вид которого заранее известен;
 - в) получение оценки вероятности изучаемого события.
- 53. Указать неверное утверждение. Выборки бывают
 - а) повторные;
 - б) бесповторные;
 - в) теоретические.
- 54. Указать верное утверждение. Средняя арифметическая определяется по формуле

- 55. Указать верное утверждение. Свойства средней арифметической:
- а) Если все значения вариант увеличить на одно и тоже число, то среднее арифметическое не изменится;
- б) Если все значения вариант увеличить в одно и тоже число раз, то среднее арифметическое увеличится в такое же число раз;
- в) Среднее арифметическое отклонения вариантов от средней арифметической всегда положительное.
- 56. Указать верное утверждение. Показателем вариации является:
 - а) медиана распределения:
 - б) средняя гармоническая;
 - в) выборочная дисперсия;
- 57. Указать верное утверждение. Модой распределения является:
 - а) середина ранжированного ряда;
 - б) полусумма наибольшего и наименьшего значений ранжированного ряда;
 - в) варианта которой соответствует наибольшая частота вариационного ряда.
- 58. Указать верное утверждение. Выборочная дисперсия определяется по формуле:

a)
$$S^2 = \sum_{i=1}^n |x_i - \overline{x}| p_i^*$$
 6) $S^2 = \sum_{i=1}^n (x_i - \overline{x})^2 p_i^*$ B) $S^2 = \sum_{i=1}^n (x_i - \overline{x})^3 p_i^*$

- 59. Указать неверное утверждение:
- а) Эмпирическую функцию распределения используют для приближённого представления теоретической функции распределения;
- б) По виду гистограммы можно приближенно определить вид теоретической функции распределения;
 - в) Кумулятивная кривая- это кривая накопленных частот.
- 60. Указать верное утверждение.
- а) Среднее арифметическое по выборке является несмещённой оценкой математического ожидания
 - б) Выборочная дисперсия является несмещённой оценкой для дисперсии.
- в) Основным недостатком метода максимального правдоподобия является состоятельность и эффективность оценок, полученных этим методом;
- 61. Указать формулу полной вероятности:

a)
$$P(A) = \frac{P(H_i)P_{H_i}(A)}{\sum_{i=1}^{n} P(H_i) \cdot P_{H_i}(A)}$$

б)
$$P(A) = 1 - q_1 \cdot q_2 \dots q_n$$

B)
$$P(A) = \sum_{i=1}^{n} P(H_i) \cdot P_{H_i}(A)$$

- 62. Указать **правильный** ответ. Вероятность произведения двух независимых событий определяется по формуле
 - a) $P(AB) = P(A) \cdot P_A(B)$
 - \emptyset) $P(AB) = P(A) \cdot P(B)$
 - B) $P(AB) = P_{\scriptscriptstyle R}(A) \cdot P_{\scriptscriptstyle A}(B)$
- 63. Указать формулу Байеса

a)
$$P_A(H_i) = \frac{P(H_i)P_{H_i}(A)}{\sum_{i=1}^{n} P(H_i) \cdot P_{H_i}(A)}$$

б)
$$P_A(H_i) = 1 - q_1 \cdot q_2 \dots q_n$$

B)
$$P_A(H_i) = \sum_{i=1}^n P(H_i) \cdot P_{H_i}(A)$$

- 64. Указать **верную** формулу. Вероятность суммы двух несовместных событий определяется по формуле
 - a) P(A+B) = P(A) + P(B) + P(AB)
 - 6) P(A+B) = P(A) + P(B) P(AB)
 - B) P(A+B) = P(A) + P(B)
- 65. Указать верную формулу. Вероятность появления хотя бы одного события определяется по формуле
 - a) $P(A) = 1 + q_1 \cdot q_2 \dots q_n$
 - β $P(A) = 1 q_1 \cdot q_2 \dots q_n$
 - B) $P(A) = 1 q_1 q_2 \dots q_n$
- 66. Указать верную формулу. Вероятность произведения двух зависимых событий определяется по формуле
 - a) $P(AB) = P(A) \cdot P_A(B)$
 - $\mathfrak{G}) P(AB) = P(A) \cdot P(B)$
 - B) $P(AB) = P_{\scriptscriptstyle B}(A) \cdot P_{\scriptscriptstyle A}(B)$
- 67. Указать **верную** формулу. Вероятность суммы двух совместных событий определяется по формуле
 - a) P(A+B) = P(A) + P(B) + P(AB)
 - 6) P(A+B) = P(A) + P(B) P(AB)
 - B) P(A+B) = P(A) + P(B)
- 68. Указать **правильный** ответ. Если дискретная случайная величина X задана своим законом распределения

X_i	\mathcal{X}_1	X_2	 \mathcal{X}_n
p_{i}	$p_{_1}$	p_2	p_{n}

То математическое ожидание случайной величины $Y = \varphi(X)$ определяется по формуле

a)
$$MY = \sum_{i=1}^{n} x_i \varphi(p_i)$$
 6) $MY = \sum_{i=1}^{n} x_i p_i$ B) $MY = \sum_{i=1}^{n} \varphi(x_i) p_i$

- 69. Указать **верное** определение. Корреляционным моментом двумерной случайной величины (X,Y) называется
 - а) Центральный момент второго порядка $M_{2,0}$
 - б) Центральный момент второго порядка $M_{0.2}$
 - в) Центральный момент второго порядка $\,M_{1.1}\,$
- 70. Указать неверное утверждение.
- а) Начальный момент первого порядка $m_{1,0}$ является математическим ожиданием компоненты X двумерной случайной величины (X,Y)
- б) Начальный момент первого порядка $m_{0,1}$ является математическим ожиданием компоненты Y двумерной случайной величины (X,Y)
- в) Начальный момент первого порядка является математическим ожиданием двумерной случайной величины (X,Y)
- 71. Указать неверное утверждение.
- а) Центральный момент второго порядка $M_{1,1}$ является дисперсией двумерной случайной величины (X,Y).
- б) Центральный момент второго порядка $M_{0,2}$ является дисперсией компоненты Y двумерной случайной величины (X,Y).
- в) Центральный момент второго порядка $M_{2,0}$ является дисперсией компоненты X двумерной случайной величины (X,Y).
- 72. Указать **верную** формулу. На практике корреляционный момент вычисляют по формуле:

a)
$$K_{yy} = M(XY) - MX - MY$$

$$δ) K_{XY} = M(XY) - MX \cdot MY$$

B)
$$K_{YY} = M(XY) + MX + MY$$

73. Указать верную формулу. Коэффициент корреляции вычисляют по формуле:

a)
$$r_{XY} = \frac{K_{XY}}{\sigma_Y^2}$$
 $\sigma_Y > 0$

6)
$$r_{XY} = \frac{K_{XY}}{\sigma_X^2}$$
 $\sigma_X > 0$

$$\mathbf{B}) r_{XY} = \frac{K_{XY}}{\sigma_X \cdot \sigma_Y} \qquad \sigma_X, \sigma_Y > 0$$

- 74. Указать неверное утверждение.
 - а) Коэффициент корреляции обладает свойством $-1 \le r_{XY} \le 1$
 - б) Если $r_{xy} = 1$, то между X и Y существует линейная связь.
- в) Положительная корреляция между случайными величинами X и Y означает, что эти случайные величины принимают только положительные значения.
- 75. Указать верное утверждение.
- а) Распределением χ_n^2 с n степенями свободы называется распределение суммы квадратов n случайных величин, распределённых по стандартному нормальному закону распределения.

- б) Распределением χ_n^2 с n степенями свободы называется распределение суммы квадратов n независимых случайных величин, распределённых по стандартному нормальному закону распределения.
- в) Распределением χ_n^2 с n степенями свободы называется распределение суммы квадратов n независимых случайных величин, распределённых по нормальному закону распределения.
- 76. Указать **неверное** утверждение. Функция распределения случайной величины удовлетворяет свойствам:
 - а) Является невозрастающей функцией;
 - 6) 0≤F(x)≤1;
 - B) $F(-\infty) = 0$.
- 77. Указать неверное утверждение. Свойства математического ожидания
 - a) M(X+Y) = MX + MY
 - $M(C \cdot Y) = C \cdot MX$
 - B) M(C) = 0
- 78. Указать неверное утверждение. Свойства дисперсии
 - a) $D(C \cdot X) = C^2 DX$
- б) D(C) = 0
- B) D(X-Y) = DX DY
- 79. Указать верное утверждение. Эксцесс вычисляется по формуле

a)
$$E = \frac{M_4}{\sigma^4}$$
, $\sigma > 0$ 6) $E = \frac{M_4}{\sigma^4} - 3$, $\sigma > 0$ B) $E = \frac{M_4}{\sigma^4} + 3$, $\sigma > 0$

80. Указать верное утверждение. Коэффициент асимметрии вычисляется по формуле

a)
$$A = \frac{M_3}{\sigma^3}$$
, $\sigma > 0$ 6) $A = \frac{M_3}{\sigma^3} - 3$, $\sigma > 0$ B) $A = \frac{M_3}{\sigma^3} + 3$, $\sigma > 0$

81. Указать **верную** формулу. Если случайные величины $X, X_1, X_2, X_3, ..., X_n$ заданы по стандартному нормальному распределению, то распределение Стьюдента задаётся формулой:

a)
$$T = \frac{X}{\sqrt{\sum_{i=1}^{n} X_{i}^{2}}}$$
 6) $T = \frac{X}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}}}$ B) $T = \frac{\sqrt{\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}}}{X}$

82. Указать верный ответ. Математическое ожидание случайной величины, распределен-

ной по закону распределения χ_n^2 , где $f_{\chi_n^2}(x) = \frac{x^{\frac{n}{2}-1}}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}e^{-\frac{x}{2}}$, $\ddot{0}$ è $x \ge 0$, равно:

a)
$$MX = n$$
. 6) $MX = 2n$. B) $MX = \frac{n}{2}$.

83. Указать верный ответ. Дисперсия случайной величины, распределенной по закону

распределения χ_n^2 где $f_{\chi_n^2}(x) = \frac{x^{\frac{n}{2}-1}}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}e^{-\frac{x}{2}}$, $\ddot{\delta}$ è $x \ge 0$, равна:

a)
$$DX = \frac{n}{2}$$
. 6) $DX = n$. B) $DX = 2n$.

84. Указать **верный** ответ. Плотность показательного распределения непрерывной случайной величины определяется по формуле:

a)
$$f(x) = \frac{x}{\sigma^2} e^{-\frac{x^2}{2\sigma^2}}$$
 6) $f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-a)^2}{2\sigma^2}}$ B) $f(x) = \lambda e^{-\lambda x}, x \ge 0$.

85. Указать **верный** ответ. Плотность равномерного распределения непрерывной случайной величины определяется по формуле:

a)
$$f(x) = \begin{cases} \frac{1}{b-a}, & x \in [a, b] \\ 0, & x \notin [a, b], a < b. \end{cases}$$

6) $f(x) = \begin{cases} \frac{1}{a-b}, & x \in [a, b] \\ 0, & x \notin [a, b], a < b. \end{cases}$

B)
$$f(x) = \begin{cases} \frac{1}{b+a}, & x \in [a, b] \\ 0, & x \notin [a, b], & a < b. \end{cases}$$

86. Указать верный ответ. Математическое ожидание случайной величины, распределен-

ной по закону распределения Стьюдента $f_T(x) = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{\pi n}\Gamma(\frac{n}{2})}(1+\frac{x^2}{2})^{-\frac{n+1}{2}}, \text{ равно:}$

a)
$$MT = n$$
, $n > 2$. 6) $MT = 0$, $n > 2$. B) $MT = \frac{n}{2}$.

87. Указать верный ответ. Дисперсия случайной величины, распределенной по закону

распределения Стьюдента $f_T(x) = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{\pi n}\Gamma(\frac{n}{2})} (1 + \frac{x^2}{2})^{-\frac{n+1}{2}}, \text{ равна:}$

a)
$$DX = \frac{n}{2}$$
, $n > 2$. 6) $DX = n$, $n > 2$. B) $DX = \frac{n}{n-2}$, $n > 2$.

88. Указать **верную** формулу. Если вероятность появления события A в одном испытании схемы Бернулли равна p, и число опытов небольшое, то вероятности появления события A k раз в n испытаниях, определяется по формуле:

a)
$$P_n(k) = C_n^k p^k q^{n-k}$$
 6) $P_n(\lambda) = \frac{\lambda^k}{k!} e^{-\lambda}$ B) $P_n(k) = \frac{1}{\sqrt{npq}} e^{-\frac{x_k^2}{2}}$

89. Указать **верную** формулу. Если вероятность появления события A в одном испытании схемы Бернулли равна p, 0 и число опытов большое, то вероятности появления события A <math>k раз в n испытаниях, определяется по формуле:

$$_{a)} P_n(k) = C_n^k p^k q^{n-k}$$

6)
$$P_n(\lambda) = \frac{\lambda^k}{k!} e^{-\lambda}, \quad \lambda = np.$$

_{B)}
$$P_n(k) \approx \frac{1}{\sqrt{npq}} e^{-\frac{x_k^2}{2}}, \quad x_k = \frac{k - np}{\sqrt{npq}}.$$

- 90. Указать **верную** формулу. Формула Стерджеса, для определения числа интервалов при построении группированного вариационного ряда имеет вид:
 - a) $t \approx 1+3,322 \ln n$. 6) $t \approx 1+3,322 \lg n$. B) $t \approx 1-3,322 \lg n$.
- 91. Указать **верную** формулу. Если вероятность появления события A в одном испытании схемы Бернулли равна p, $0 и число опытов большое, то вероятности появления события A не менее <math>k_1$ раз и не более k_2 раза в n испытаниях, определяется по формуле:

a)
$$P_n(k_1,k_2) = \sum_{k=k}^{k_2} P_n(k)$$
, где $P_n(k) = C_n^k p^k q^{n-k}$;

б)
$$P_n(k_1, k_2) = \sum_{k=k_1}^{k_2} P_n(k)$$
, где $P_n(\lambda) = \frac{\lambda^k}{k!} e^{-\lambda}$, $\lambda = np$.

в)
$$P_n(k_1, k_2) = \Phi(b) - \Phi(a)$$
; где $a = \frac{k_1 - np}{\sqrt{npq}}$, $b = \frac{k_2 - np}{\sqrt{npq}}$, $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_0^x e^{\frac{x^2}{2}} dx$

92. Указать **верную** формулу. Если задана функция распределения F(x) непрерывной случайной величины X, то её функция плотности определяется по формуле:

a)
$$f(x) = F'(x);$$
 6) $f(x) = \int_{-\infty}^{x} F(x)dx$ B) $f(x) = \frac{1}{F(x)};$

93. Указать **верную** формулу. Если задана функция плотности f(x) непрерывной случайной величины X, то её функция распределения F(x) определяется по формуле:

a)
$$F(x) = f'(x);$$
 6) $F(x) = \int_{-\infty}^{x} f(x)dx$ B) $F(x) = \frac{1}{f(x)};$

- 94. Указать **верную** формулу. Дисперсия суммы двух случайных величин определяется по формуле:
 - a) D(X+Y) = DX + DY;
 - 6) $D(X + Y) = DX 2K_{yy} + DY$;
 - B) $D(X+Y) = DX + 2K_{xy} + DY$.
- 95. Указать **верную** формулу. Оценку $\tilde{\theta}$ параметра распределения θ называют несмещённой, если:

a)
$$M(\tilde{\theta}-\theta)^2 = \min_{\theta^*} M(\theta^*-\theta)^2$$
;

$$\mathfrak{G}$$
) $M\widetilde{\theta} = \theta$;

$$\lim_{n\to\infty} P(\left|\theta-\tilde{\theta}\right|<\varepsilon)=1, \quad \forall \varepsilon>0$$

96. Указать **верную** формулу. Оценку $\tilde{\theta}$ параметра распределения θ называют состоятельной, если:

a)
$$M(\tilde{\theta}-\theta)^2 = \min_{\theta^*} M(\theta^*-\theta)^2$$
;

B)
$$\lim_{n \to \infty} P(\left|\theta - \tilde{\theta}\right| < \varepsilon) = 1, \quad \forall \varepsilon > 0$$

97. Указать **верную** формулу. Оценку $\tilde{\theta}$ параметра распределения θ называют эффективной, если:

a)
$$M(\tilde{\theta}-\theta)^2 = \min_{\theta^*} M(\theta^*-\theta)^2$$
;

$$δ_{0} M \tilde{\theta} = \theta;$$

$$B_{0} \lim_{n \to \infty} P(\left|\theta - \tilde{\theta}\right| < \varepsilon) = 1, \quad \forall \varepsilon > 0;$$

98.Указать **верный** ответ. Формула
$$f(\sqrt[y]{_X}) = \frac{f_Y(y) \cdot f_X(\sqrt[x]{y})}{\int f_Y(y) \cdot f_X(\sqrt[x]{y}) dy}$$
 является:

- а) аналогом формулы Байеса для непрерывных случайных величин;
- б) аналогом формулы полной вероятности для непрерывных случайных величин;
- в) аналогом формулы отношения вероятностей независимых событий для непрерывных случайных величин.
- 99. Указать **верную** формулу. На практике для вычисления корреляционного момента двумерной случайной величины (X,Y) применяют формулу:

a)
$$K_{xy} = M(X \cdot Y) + MX \cdot MY$$

$$K_{XY} = M(X \cdot Y) - MX \cdot MY$$

$$K_{XY} = M(X \cdot Y) - MX - MY$$

100. Указать **верное заключение**. Пусть $\{X_n\}$, $n=\overline{1,\infty}$ последовательность независимых случайных величин, у которых равномерно ограничены дисперсии

 $DX_n \leq C$, C-const, C>0 и все математические ожидания MX_n -конечны, тогда

a)
$$\forall \varepsilon > 0$$
 $\lim_{n \to \infty} P\left(\left|\frac{1}{n}\sum_{k=1}^{n}X_{k} - \frac{1}{n}\sum_{k=1}^{n}MX_{k}\right| \ge \varepsilon\right) = 0$

6)
$$\forall \varepsilon > 0$$
 $\lim_{n \to \infty} P(\left| \frac{1}{n} \sum_{k=1}^{n} X_k - \frac{1}{n} \sum_{k=1}^{n} MX_k \right| \ge \varepsilon) = 1$

$$\mathbf{B}) \ \forall \varepsilon > 0 \quad \lim_{n \to \infty} P\left(\left| \frac{1}{n} \sum_{k=1}^{n} X_k + \frac{1}{n} \sum_{k=1}^{n} M X_k \right| \ge \varepsilon\right) = 0$$

Критерии оценки текущей аттестации (по тестам)

75-100% правильных ответов – оценка «зачтено» менее 75% – оценка «не зачтено»

Промежуточная аттестация студентов. Промежуточная аттестация студентов по дисциплине «Теория вероятностей и математическая статистика» проводится в соответствии с актами ВУЭС и является обязательной.

Экзамен проходит в форме контрольной работы с целью выяснения объема знаний обучающегося по разделам/темам дисциплины, пройденным за аттестуемый период.

Оценочные средства для промежуточной аттестации

Вариант 1

- 1. Старшине роты необходимо составить список из 9 солдат в любом порядке. Сколько различных списков он может составить?
- 2. Из полного набора шахматных фигур случайно извлекаются три фигуры. Найдите вероятность того, что это будут две ладьи и пешка.
- 3. Два стрелка сделали по одному выстрелу по мишени. Известно, что вероятность попадания в мишень для одного из стрелков равна 0,6, а для другого -0,7. Найти вероятность того, что хотя бы один из стрелков попадет в мишень.

- 4. Для данного участника игры вероятность набросить кольцо на колышек равна 0,3. Какова вероятность того, что при 6 бросках 3 кольца окажутся на колышке, если считать броски независимыми?
 - 5. По данным таблицы, выполните следующее: заполните пустые места в таблице;

найдите математическое ожидание, дисперсию, среднее квадратичное отклонение

X	1	2	3	4
p	0,2	0,4		0,1

Вариант 2

- 1. Сколькими способами можно выбрать две монеты из трех: 1,2,3 копейки?
- 2. Из колоды, содержащей 36 карт, наудачу извлекаются три карты. Найдите вероятность того, что все они одной масти.
- 3. Ящик содержит 90 годных и 10 дефектных деталей. Сборщик последовательно достает из ящика 10 деталей. Найти вероятность того, что среди взятых деталей хотя бы одна дефектная.
- 4. У игрока 5 шариков, которые он бросает до первого попадания или до полного израсходования всех шариков. Найдите вероятность того, что не все шарики будут израсходованы, если вероятность попадания при одном броске равна 0,1.
 - 5. По данным таблицы, выполните следующее: заполните пустые места в таблице;

найдите математическое ожидание, дисперсию, среднее квадратичное отклонение

ĺ	1		2 2		1	
	X	1	2	3	4	
	p	0,3	0,4		0,1	

Вариант 3

- 1. В разрезной азбуке было составлено слово КНИГА. Мальчик случайно уронил эти буквы. Сколькими способами он может их составить?
- 2. В коробке имеется 45 карандашей, 10 из которых сломаны. Художник наудачу извлекает 5 карандашей. Найти вероятность того, что извлеченные карандаши сломаны.
- 3. Два охотника сделали по одному выстрелу по зайцу. Известно, что вероятность попадания для одного из них равна 0.6, а для другого -0.7. Найти вероятность того, что только один из охотников попадет в зайца.
- 4. Вероятность наличия опечатки на странице книги равна 0,0025. Какова вероятность того, что из 400 страниц опечатки имеются только на пяти страницах?
 - 5. По данным таблицы, выполните следующее: заполните пустые места в таблице;

найдите математическое ожидание, дисперсию, среднее квадратичное отклонение

X	1	2	3	4
p	0,2	0,2		0,1

Вариант 4

- 1. Сколько различных 4-х буквенных сочетаний можно составить из слова КАН-ДЕЛЯБР?
- 2. Кафедра физвоспитания приобрела для футбольной команды 16 футболок с номерами от 1 до 16. Игроки наудачу берут 10 футболок. Найти вероятность того, что футболка под номером 13 окажется не взятой.
- 3. Вероятность попадания в мишень при одном выстреле для первого стрелка равна p, а для второго -0.7. Известно, что вероятность попадания при одном выстреле обоих стрелков равна 0.35. Найти p.
- 4. Какова вероятность того, что при десяти бросаниях игрального кубика тройка выпадет от двух до четырех раз?

5. По данным таблицы, выполните следующее: заполните пустые места в таблице;

найдите математическое ожидание, дисперсию, среднее квадратичное отклонение

x	1	2	3	4	5
p	0,2	0,4		0,1	0,1

Вариант 5

- 1. Из группы в 20 голов крупного рогатого скота, предназначенного для откорма, для контрольного определения среднесуточного привеса отбирается группа из 8 животных. Сколькими способами это можно сделать?
- 2. Брошены 3 игральные кости. Найти вероятность того, что сумма выпавших очков равна 12, если их произведение равно 48.
- 3. Охотник выстрелил 3 раза по удаляющейся цели. Вероятность попадания в нее в начале стрельбы равна 0,8; а после каждого выстрела уменьшается на 0,1. Найти вероятность того, что он попадет хотя бы один раз.
- 4. На самолете имеются 4 одинаковых двигателя. Вероятность нормальной работы каждого двигателя в полете равна p. Найдите вероятность того, что в полете могут возникнуть неполадки в одном двигателе.
 - 5. По данным таблицы, выполните следующее: заполните пустые места в таблице; найдите математическое ожидание, дисперсию, среднее квадратичное отклонение

x	1	2	3	4
p	0,2	0,1		0,1