Математическая логика и теория алгоритмов

Первухин Михаил Александрович

Исчисление высказываний

Лекция 3

Определение формального исчисления

Будем говорить, что формальное исчисление I определено, если выполняются четыре условия.

- 1. Имеется некоторое множество A символов $an\phi abum$ исчисления I. Конечные последовательности символов называются cnobamu или bupamenumu исчисления I. Обозначим через S множество всех слов алфавита исчисления I.
- 2. Задано подмножество $F \subseteq S$, называемое множеством формул исчисления I. Элементы множества F называются формулами.

Определение формального исчисления

- 3. Выделено множество $Ax \subseteq F$ формул, называемых *аксиомами* исчисления I.
- 4. Имеется конечное множество K отношений R_1, R_2, \ldots, R_n между формулами, называемых *правилами вывода,* причем если $(\varphi_1, \ldots, \varphi_m, \varphi) \in R_i$, то φ называется непосредственным следствием формул $\varphi_1, \ldots, \varphi_m$ по правилу R_i .

Итак, исчисление I есть четверка (A, F, Ax, K).

Выводом в исчислении I называется последовательность формул $\varphi_1, \varphi_2, ..., \varphi_n$ такая, что для любого i ($1 \le i \le n$) формула φ_i есть либо аксиома исчисления I, либо непосредственное следствие каких-либо предыдущих формул.

Формула φ называется *теоремой исчисления I, выводимой в I,* или *доказуемой в I*, если существует вывод $\varphi_1, \dots, \varphi_n, \varphi$, который называется выводом формулы φ или доказательством теоремы φ .

Если существует алгоритм, с помощью которого для произвольной формулы φ через конечное число шагов можно определить, является ли φ выводимой в исчислении I или нет, то исчисление называется разрешимым.

Исчисление называется *непротиворечивым*, если не все его формулы доказуемы.

Система аксиом и правил вывода

Используя понятие формального исчисления, определим исчисление высказываний (ИВ).

Алфавит ИВ состоит из букв x,y,z,u,v, возможно с индексами (которые называются пропозициональными переменными), логических символов (связок) \neg , \land , \lor , \rightarrow , а также вспомогательных символов (,).

Множество формул ИВ определяется индуктивно:

- а) все пропозициональные переменные являются формулами ИВ;
- б) если φ, ψ формулы ИВ, то $\neg \varphi, (\varphi \land \psi), (\varphi \lor \psi), (\varphi \to \psi)$ формулы ИВ;
- в) выражение является формулой ИВ тогда и только тогда, когда это может быть установлено с помощью пунктов "а" и "б".

Таким образом, любая формула ИВ строится из пропозициональных переменных с помощью связок ¬,Λ,V, →.

Подформулой ψ формулы φ ИВ называется подслово φ , являющееся формулой ИВ.

Под ∂ линой формулы φ будем понимать число символов, входящих в слово φ .

Аксиомами ИВ являются следующие формулы для любых формул φ, ψ, χ ИВ:

- 1. $\varphi \rightarrow (\psi \rightarrow \varphi)$;
- 2. $(\varphi \rightarrow \psi) \rightarrow ((\varphi \rightarrow (\psi \rightarrow \chi)) \rightarrow (\varphi \rightarrow \chi));$
- 3. $(\varphi \wedge \psi) \rightarrow \varphi$;
- 4. $(\varphi \wedge \psi) \rightarrow \psi$;
- 5. $(\varphi \rightarrow \psi) \rightarrow ((\varphi \rightarrow \chi) \rightarrow (\varphi \rightarrow (\psi \land \chi)));$
- 6. $\varphi \rightarrow (\varphi \lor \psi)$;
- 7. $\varphi \rightarrow (\psi \lor \varphi)$;
- 8. $(\varphi \rightarrow \chi) \rightarrow ((\psi \rightarrow \chi) \rightarrow ((\varphi \lor \psi) \rightarrow \chi));$
- 9. $(\varphi \rightarrow \psi) \rightarrow ((\varphi \rightarrow \neg \psi) \rightarrow \neg \varphi)$;
- 10. $\neg \neg \varphi \rightarrow \varphi$.

Указанные формулы называются *схемами аксиом ИВ.* При подстановке конкретных формул в какую-либо схему получается *частный случай схемы аксиом.*

Единственным правихом выводимые формулы, то ψ - также выводимая формула. Символически это записывается так:

$$\frac{\varphi, \ \varphi \to \psi}{\psi}$$

Говорят, что формула φ выводима в ИВ из формул $\varphi_1, ..., \varphi_m$ (обозначается $\varphi_1, ..., \varphi_m \vdash \varphi$), если существует последовательность формул $\psi_1, ..., \psi_k, \varphi$, в которой любая формула либо является аксиомой, либо принадлежит множеству формул $\{\varphi_1, ..., \varphi_m\}$, называемых гипотезами, либо получается из предыдущих по правилу вывода. Выводимость формулы φ из \emptyset ($\vdash \varphi$) равносильна тому, что φ - теорема ИВ или доказуемая формула ИП $^\Sigma$.

Пример

Покажем, что $\vdash \varphi \rightarrow \varphi$.

Квазивыводом в ИВ формулы φ из формул $\varphi_1, ..., \varphi_m$ называется последовательность формул $\psi_1, ..., \psi_k, \varphi$, в которой любая формула, либо принадлежит множеству формул $\{\varphi_1, ..., \varphi_m\}$, либо выводима из предыдущих.

Замечание 1. Если существует квазивывод в ИВ формулы φ из формул $\varphi_1, \dots, \varphi_m$, то φ выводима в ИВ из формул $\varphi_1, \dots, \varphi_m$.

Примеры

Покажем, что $\varphi, \psi \vdash \varphi \land \psi$.

Покажем, что $\varphi \vdash \neg \neg \varphi$.