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Quantum recognition of eigenvalues, structure of devices
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Abstract

Quantum algorithms speeding up classical counterparts are proposed for the problems:
1. Recognition of eigenvalues with fixed precision. Given a quantum circuit generating

unitary mapping U and a complex number the problem is to determine is it an eigenvalue
of U or not.

2. Given a molecular structure find thermodynamic functions like partitioning func-
tion, entropy, etc. for a gas consisting of such molecules.

3. Recognition of molecular structures. Find a molecular structure given its spectrum.
4. Recognition of electronic devices. Given an electronic device that can be used only

as a black box how to recognize its internal construction?
We consider mainly structures generating sparse spectrums. These algorithms require

the time from about square root to logarithm of the time of classical analogs and for
the first three problems give exponential memory saving. Say, the time required for
distinguishing two devices with the same given spectrum is about seventh root of the
time of direct classical method, for the recognition of eigenvalue - about sixth root. Thus
microscopic quantum devices can recognize molecular structures and physical properties
of environment faster than big classical computers.
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1 Electronic devices and quantum computations

1.1 Statements of problems and outline of the work

The aim of this paper is to build effective quantum algorithms for the problems of the following
types:

• Given a quantum gate array generating unitary operator U and a complex number ω how
to determine is it an eigenvalue of U or not (precision of determining eigenvalues is fixed)?

• How to recognize a structure of unknown electronic or molecular device given only access
to its function?

Here the first problem will be an important intermediate step in the solution of the second
1. Consider them sequentially.

Recognition of eigenvalues. This problem is closely connected with finding of eigenvalues
distribution or density of states (DOS) that is energy levels E0 < E1 < . . . and dimensions of
the corresponding subspaces d0, d1, . . .. DOS plays a key role in calculation of thermodynamic
functions given by

F =
∑

j

a(j)dje
− Ej

kBT (1)

for some values a(j) so that the summands quickly converge to zero. Say, if all a(j) = 1
this expression gives the partition function Q, if a(j) = Ej/Q it gives an average energy, if

1A straightforward calculation shows that the simulation of evolution generated by a given Hamiltonian up
to a time instant τ with a fixed accuracy requires of order τ2 steps on a quantum computer. This means that
all results of the paper can be generalized to arbitrary quantum systems. This subject will be elaborated in
more details in another paper.
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a(j) = −kB

Q
ln(e−Ej/kBT /Q) - an entropy. Having an efficient method of finding dj we would be

able to obtain thermodynamic functions and to determine important properties of environment
consisting of such molecules like heat capacity. The best known classical method of finding
DOS was proposed by Hams and Raedt in the work [HR]. Their method requires the time of
order dimension N of the space of states and the memory of the same order (whereas the direct
method of calculation eigenvalues requires the time of order N3). The first quantum algorithm
for this problem proposed by Abrams and Lloyd in [AL] requires the same time O(N) and
logarithmic memory. The method proposed in the present work requires the time of order
square root of classical and memory of order ln2 N .

The idea of our approach is the following. We shall use combination of Grover search
algorithm (GSA), revealing eigenvalues by Abrams and Lloyd method ([AL]) and universal
quantum function of application App. Abrams and Lloyd method of revealing eigenvalues is
based on the application of U controlled by ancillary qubit α as

Ucond|x, α〉 −→
{

|U x, α〉, if α = 1,
|x, α〉 if α = 0.

Note that it is the direct generalization of Shor’s trick which can be obtained if U is a multi-
plication by a given integer modulo q ([Sh]).

Recognition of devices structure.

We shall tell apart two versions of this general problem: the recognition of molecular struc-
tures and the recognition of electronic circuits.

If we want to determine a molecular structure then it is natural to assume that its function-
ality is given as the spectrum of its Hamiltonian, e.g. the set of its energy levels. Thus here it
is required to find a quantum system whose Hamiltonian has a given spectrum.

The problem of recognition of electronic circuits is stated otherwise. An electronic device
is thought of as a source of electromagnetic fields which can control some quantum system Q.
Let such a field induces evolution of the system with Hamiltonian H in time frame δt. Thus we
have a correspondence: electronic device −→ Hamiltonian, δt. Evolution of a quantum system
Q induced by this Hamiltonian can be presented as a unitary transform U = e−

i
h

Hδt. Then,
given a device C and a value of time t we can associate with it some unitary transformation UC .
Assume that we have recognized a circuit C if we find some circuit C1 such that UC = UC1 with
high accuracy. We shall write U instead of UC for the circuit C that we want to recognize. But
in fact we shall solve the more general problem when a tested device C can be used as a black
box acting on n qubits as a function UC so that if x is an input then UC |x〉 is a result of its
action on this input. Here a tested device can contain its own quantum memory and it can be
entangled with Q in course of fulfilling U but this entanglement must be then eliminated. The
existence of such entanglement means that this case cannot be described by the Hamiltonian
of system Q. For the simplicity we assume that an unknown circuit is built of elementary
functional elements from some fixed set {E1, E2, . . . , Eo}. The next natural assumption is that
a size of circuit is limited by some constant c so that our circuit is some unknown combination of
c functional elements. Denote by E all circuits of the length c. We can encode such C ∈ E by a
string [C] of ones and zeroes so that decoding procedure is easy as well and we can immediately
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recreate a circuit given its code. Thus we can look through all circuits looking through its
codes. The same coding can be built for electronic devices.

A straightforward solution of the problems is clear. For the problem of recognition of
molecular structures all that we need is to be able to recognize eigenvalues of transformation
generated by a given circuit. Each eigenvalue of unitary operator has the form e2πiω where ω
is a real number from [0, 1) called frequency. In what follows by spectrum we mean a set of all
frequencies. Let all frequencies are grouped near points of the form l

M
where M is not very

big, l = 0, 1, . . . , M − 1. Assume that the acceptable precision of recognition of frequencies is
1/M . Then having an algorithm for eigenvalue recognition we can apply it again and again
constructing spectrums generated by all possible circuits and thus find a wanted circuit with
given spectrum. If we need to recognize a circuit of electronic device we can examine all possible
circuits taken in some order. Examination of one circuit means that we run it on all possible
inputs one after another and compare the results with the corresponding result of a tested
device action.

For the problem of recognition of molecular structures our method requires the time of order
sixth root of the time of direct classical method whereas memory saving is exponential. For the
problem of recognition of electronic circuits our method gives at least square root time saving in
the case when classical counterparts exist (this is the narrow formulation when a tested device
generates classical mapping). But in general case an advantage may be more. For example we
can tell apart two devices with the same spectrum in the time about seventh root of the time
of naive bruit force.

To recognize devices quantumly we must be able to store and fulfill operations on the codes
of different circuits. This possibility is based on the existence of a quantum analog of the
universal Klini function. This is a unitary operator App such that for all quantum devices C
and all inputs x App|x, [C]〉 = |UC x, [C]〉. We assume that for the wide range of quantum
devices C with c particles C may be encoded as integer [C] in time O(c) so that the quantum
complexity of App is O(c) as well.

We shall consider here a particular case of the problem when all eigenvalues of U are known
a-priori or can be obtained beforehand. This restriction is not yet very constraining. To
illustrate what kind of tasks we shall be able to solve by the proposed method consider a few
examples of the problem of recognition of an electronic device whose spectrum is known.

Recognition of quantum algorithms designed as subroutines. Such algorithms must restore
an input if we apply it twice. Computing a function f they act as |x, b〉 −→ |x, b+f(x) mod 2〉.
All known quantum algorithms can be presented in such form. For such quantum algorithms
their unitary transformation U has only two eigenvalues: 1 and −1. Given a controlling device
for such algorithm (it may include classical elements and ancillary qubits as well) we can quickly
recognize its construction. Alternatively, we can quickly find quantum or classical algorithm
for a given task.

Consider a ”classical” particular case of the recognition problem when U maps each basic
state to a basic state which means that the matrix of U consists of ones and zeroes and in
addition U equals U−1. Here evident strategy of recognition takes of order card(E)2n steps.
This case of the problem may be reformulated as the finding of such t that for all s some
given predicate A(t, s) is true. This is the problem of verification of logical formulas. Quantum
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solution of it in a time about square root of classical time based plainly on Grover’s trick
was proposed in [BCW]. This method doesn’t work in the general case where UC is arbitrary
involutive unitary transform, e.g. such that U = U−1. Just this general case is the subject of
this work. Here we cannot recognize a circuit so easy as in ”classical” case because it is difficult
to compare two quantum states UC |x〉 and U |x〉.

The general idea of our approach to the recognition of arbitrary electronic devices is the
following. We shall include a device C which structure we want to recognize into a classical
controlling part of quantum computer. Thus a tested device generates unitary transformation
on n qubit system. Then reveal eigenvectors of U using Ucond by the method mentioned above
and compare them with eigenvectors of circuits from E choosing a circuit giving the best
approximation. Here GSA will be used in the last step and in the several intermediate steps.

Assumption about sparse spectrum

In this paper we shall consider mainly circuits generating sparse spectrums. It means that
spectrums of operators UC are so designed that the frequencies are grouped into groups such
that a minimal distance between frequencies from the different groups is more than 1/M and a
maximal distance between frequencies from the same group is less than 1/L. For the problems
of eigenvalues and molecular structures recognition we require that L = 16M that is not yet
very restricting. For the recognition of electronic devices we shall suppose L � M that is
more strong limitation. Spectrums are called sparse if M = const when N −→ ∞. For sparse
spectrums our algorithms show the best performance.

Spectrums that are not sparse are called dense. For dense spectrums our methods give the
less advantage over classical algorithms (look at section 3.6). An example of dense spectrum:
ωk = k

N
, k = 0, 1, . . . , N − 1. The similar problems for dense spectrums will be studied in one

of the following papers.
We write ω′ ≈ ω iff ω′ and ω belong to the same group. For the simplicity assume also that

for each group of frequencies there exists a number of the form l/M disposed between some
two frequencies of this group where l is an integer less than M .

1.2 An abstract model of QC. ”Plug and play” technology

To build algorithms recognizing circuits we need an abstract model of quantum computer (QC).
QC consists of two parts: quantum and classical. Classical part exactly determines what unitary
transformation must be fulfilled at each time instant with quantum part and thus plays a role
of controller for it. These unitary transformations are of two sorts: working transformations -
which our computer performs itself and query transformations - induced by a tested device: U
or Ucond.

We can suppose that a quantum part Q consists of nuclear spins or interacting dipoles (or
some other quantum two levels systems) and a classical part is a source of electromagnetic fields
determining evolution of a quantum part. The general form of a state of quantum part will be

χ =
2ν−1
∑

i=0
λiei where the basic states of it e0, . . . , e2ν−1 are simply strings of ones and zeroes of

the length ν where ν > n is the size of quantum part which can contain some auxiliary qubits

behind input for U ,
2ν−1
∑

i=0
|λi|2 = 1, N = 2n is the number of all classical input words for U .
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Classical part determines when to ”switch on” a tested device (usually it happens many
times) and when to observe a result of computation. Observation of a state χ gives every basic
state ei with the corresponding probability |λi|2.

The problem of recognition of electronic devices presumes the so-called ”plug and play”
technology where a tested device is applied only as a black box. If query transformations are
only U then our model evidently satisfies requirements of ”plug and play” technology where
we classically control when to switch on a tested device. An implementation of Ucond in the
framework of this technology is not so easy because it requires a quantum control on applications
of the device 2. Nevertheless it is possible to implement Ucond in the framework of ”plug and
play” technology. This possibility will be substantiated in the following papers. Now we shall
simply presume that it is possible. Such difficulty does not exist for the problems of eigenvalue
and molecular structures recognition. Here we can manage without oracles at all because
having an explicit form of a quantum gate array realizing a universal function of application
App we can quantumly control its actions in each element separately and simultaneously thus
implementing Ucond.

Let every basic state be partitioned as:
ei = |place for code [C], R1̄, R2̄, . . . , Rl̄〉, where each register Rī in its turn is partitioned into a
place for argument, places for time instants and places for the corresponding frequencies. Here
a complex index ī contains one or two integers so that the length of ei is polynomial of c and
n of at most second degree.

2 Obtaining new algorithms from basic quantum tricks

2.1 GSA and amplitude amplification

GSA proposed in ([Gr]) is one of two basic quantum tricks. It is meant for quick getting of
a quantum state ā given the inversion along this state Iā. An inversion along some state ā is
defined by

Iā|x̄〉 =

{

|x̄〉, if x⊥a,
−|ā〉, if x = a.

We also assume that Iā acts like identity if ā does not exist. A typical situation is when a
state is unknown but the inversion along it can be fulfilled easily. Say, let ā be a solution of
equation f(x) = 1 with a simply computable Boolean function f . Then the inversion Iā can

be implemented by addition modulo 2 of f(x) to an ancillary qubit initialized by |0〉−|1〉√
2

. This

transformation maps a state |x, |0〉−|1〉√
2

〉 to the same state with the sign + or − subject to the

satisfaction of equality f(x) = 1. The transformation is unitary and can be easily fulfilled given
a device fulfilling f . All sequential transformations in our formulas will be applied from right
to left.

GSA is sequential applications of the transformation G = IāI0̃ to a state 0̃ which is chosen
randomly beforehand. If we apply this transformation O(

√
N) times where N is the dimension

2This would be evidently possible provided we have access to the internal details of our device and can
quantumly control their work simultaneously. But this assumption contradicts to ”plug and play” technology.
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of main space then an observation of quantum part yields ā with visible probability whereas
without quantum computer we would be compelled to spend of order N steps to find ā.

A little difficulty here is that we don’t know exactly a time instant t when to stop iterations
to make probability of error negligible that is needed when applying GSA as subroutine. Here
the following simple trick helps.

Define a number B = B(N) so that 1/B is an average value of |〈a | 0̃〉| for 0̃ uniformly
distributed on a sphere of radius 1 in the space of inputs. A straightforward calculation shows
that B = O(

√
N). Let GenArgj be operators generating arbitrary vectors āj from the space of

inputs belonging to independent uniform distributions, j ∈ {1, 2, . . . , k}, and let GenTimeArgj

be operators generating time instants tj from independent uniform distributions on integers
from the segment [0, B]. Arrange k copies of two working registers: for input and for storage of
a time instant and fulfill the corresponding operator (I0̃Iā)

tjGenArgjGenTimej on each register.
Now if ā exists then the probability to obtain ā observing any one register is at least 1/4 (it is
shown in [BBHT]) and the probability to obtain any fixed other state will be negligible because
our operators GenArgj generate independent uniformly distributed samples. If ā does not exist
which means that Iā is identity then the probability to obtain any fixed state will be negligible.
Denote by āj the contents of j-th register for argument in the resulting state. Consider the
following criterion: if at least one fifth of āj , j = 1, 2, . . . , k coincide then we decide that ā is
this value, if not then ā does not exist. Calculate the error probability of this criterion. Let K
be a number of such j that āj = ā. By the central limit theorem the probability that a fraction

(k/4)−K√
(k/4)·(3/4)

belongs to the segment [α1, α2] is closed to 1√
2π

α2
∫

α1

e−
x2

2 dx. Then the straightforward

calculations give that the probability of that K ≤ k/5 will be of order
∞
∫

α1

e−
x2

2 dx for α1 of

order
√

k. Thus to make error probability of order 1/
√

N it would suffice to choose k of order
n = log N . This method can be used not only for GSA but also for other algorithms. If a
probability to obtain a right result for each of k registers is some positive p which does not
depend on the dimensionality then to make this probability 1/N1 it is sufficient to choose k
of order log N1. In what follows we shall use this simple trick without special mentioning and
will mark the simultaneous operations of the same kind on all working registers by

⊗

j
. We

assume that all ensembles generated by the different j-th copies of operators are taken from
the independent distributions.

We shall use the standard norm on operators in Hilbert space defined by ‖A‖ = sup
‖x̄‖=1

‖Ax̄‖.
Given an operator A denote by Aε such operator A′ that ‖A − A′‖ ≤ ε. In what follows we
shall use a simple trick described above making necessary copies of registers and so will raise
an accuracy of our operators up to required level. When we must repeat an operator T times
the required accuracy of one application must be 1/T and it may be ensured by only linear
price in memory as it was shown above. This means that we shall always use Aε instead of A
without special mentioning where ε = O(1/T ) if an operator A must be repeated T times.
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2.2 Revealing of eigenvalues

The second basic quantum trick is designed to reveal eigenvalues of a given unitary operator
U . We shall define an operator revealing frequencies in accordance to the work [AL].

Let M = 2m, L = 2p. We are going to determine frequencies of unitary operators in within
1/L where L is a number of applications of U required for the revelation of frequencies with
this accuracy which means that 1/M is an accuracy that is sufficient to tell apart eigenvalues
of U . For the recognition of eigenvalues we put p = m + 4 so that L = 16M .

Denote by (0.l)p a number from [0, 1) of the form l/L. Let an operator U have eigenvalues
e2πiωk where frequencies ω0, ω1, . . . , ωN ′−1 are the different real numbers from [0, 1). Denote by
Ek the space spanned by all eigenvectors corresponding to ωk. An arbitrary vector with the

length 1 from Ek will be denoted by Φk. Thus every state ξ has the form ξ =
N ′−1
∑

k=0
xkΦk.

Let Ω = {ω̃k,i} be some set of integers from {0, 1, . . . , L−1}, 0 ≤ i ≤ M−1, 0 ≤ k ≤ N ′−1;
ε, δ > 0. Denote Lk

ε(Ω) = {i : |(0.ω̃k,i)p − ωk| ≤ ε or
|(0.ω̃k,i)p − ωk − 1| ≤ ε}.

Definition 1 A transformation W of the form

W : |ξ, 0m+4〉 −→
N ′−1
∑

k=0

L−1
∑

i=0

λi,k|Φk, ω̃k,i〉

is called a transformation of Wδ,ε type if for all k and ξ
∑

i∈Lk
ε (Ω)

|λi,k|2 ≥ |xk|2(1 − 2δ) .

Thus, δ is an error probability of getting right frequencies ωk by observation of the second
register, and ε is a precision of frequencies approximations.

Definition 2 A unitary operator R is called revealing frequencies of U if R belongs to the
type W 1

K
, K

L
for any K ∈ {1, 2, . . . , L}.3

The key here is the quantum version of Fourier transform defined by

QFTL : |s〉 −→ 1√
L

L−1
∑

l=0

e
−2πisl

L |l〉

We need also the following generalization Useq of operator Ucond:

UL
seq|x, a〉 = |Uax, a〉.

This is the result of a sequential applications of U to the main register. To implement this
operator by means of Ucond fulfill the following cycle. For integer counter j altering from 1 to
the maximal value L−1 of a apply U iff j ≤ a. Then one cycle consists of Ucond with a properly
prepared controller and the resulting operator will be UL

seq.
Define an operator revealing frequencies by

Rev = QFTL UL
seq QFTL,

3in what follows we shall use this notion only with K = 16.
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where quantum Fourier transforms are applied to the second register 4. In the work [Oz] it
was proved that Rev is a transformation revealing frequencies. Now we need more. For the
redistribution of amplitudes xk we shall need also a transformation Rest cleaning the second
register. An ideal candidate for this role would be Rev−1 but a problem is that it requires
an application of U−1 that is physically unrealizable given only device fulfilling U excluding
evident cases where say U = U−1. We can use this easiest definition of Rest only in case when
we are given a circuit implementing U (say, gate array) because then U−1 is accessible for us as
well as U . But if C is given only as a black box then the restoring operator should be defined
separately.

We shall find an operator restoring ancilla in the form

Rest = RevD

where D is some operator of turning.
Let we are given some integers ω̃L

k of the form q
L
, q - integer, ω̃L

k ≈ ωk. Then we could define
an operator of turning D by D|Φk, l〉 = e−2πi(L−1)δk,l |Φk, l〉 where δk,l = ω̃L

k − (0.l)m. It was
proved in [Oz] that ‖(RestRev|χ, 0̄〉 − |χ, 0̄〉‖ < 7M/L which means that so defined restoring
operator really restores zeroes in the second register after action of Rev provided L is large
enough. To create these good approximations we apply a bit more general construction. Put

D = Enh D̃ Enh

where an operator Enh calculates an integer function h(l) giving a good approximation (0.h(l))p

of frequencies in within 1/L given their rough approximation (0.l)m in within 1/M and places
them into ancilla, D̃ turns each eigenvector on appropriate angle:
D̃|Φk〉 = e−2πi(M−1)((0.h(l))p−(0.l)p)|Φk and the last application of Enh cleans ancilla. An operator
Enh is accessible given good approximations of eigenvalues. Thus our operator Rest restores
zeroes in ancilla in within 1/L.

We can reach an accuracy 1/L of all operators of type Rest that will be less than 1/t
where t is the number of all steps in computation and this accuracy can be guaranteed with
log L = p registers. Emphasize that this difficulty with eigenvalue precision arises only when
U−1 is inaccessible - in the problem of recognition of electronic circuits in the section 3.4 where
we must choose L � M .

Operators Rev and Rest can be built in the form of quantum gate array using universal
quantum Klini function App where a code [C] of circuit generating U is a part of input. We
shall write the operator U corresponding to these two operators as its upper index.

3 Problems of recognition

3.1 Getting eigenvectors and recognition of eigenvalues

Our assumption about sparse spectrum now is stated as L = 16M = const. In view of that
Rev reveals frequencies it belongs to the type W 1

16
, 1
M

. By the definition of Wδ,ε it means that

4the first QFT can be replaced by Walsh-Hadamard transform as in [AL] because on zero ancilla it is
equivalent
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Rev gives a state
N ′−1
∑

k=0

M−1
∑

i=0
λi,k|Φk, ω̃k,i〉 where the seven eighth of probability is concentrated on

such pairs i, k that (0.ωi,k)m is closed to ωk. This means that we can get eigenvalues with high
probability observing the second register whereas the first register will contain the corresponding
eigenvector. This way of getting eigenvectors was proposed in the papers [AL, TM]. The
first disadvantage of it is irreversibility. Observing a state we lose full information about it
and cannot use this state again that is very important for building of nontrivial quantum
algorithms. The second disadvantage is that this way gives a random eigenvector when it is
typically required to obtain the eigenvector corresponding to a given frequency.

Let we are given a good approximation ω̃L of some frequency ω written as a string of p its
sequential binary figures and let Eω = {Φω

1 , . . .Φω
l } be a basis of the subspace Eω of eigenvectors

corresponding to all frequencies ω′ ≈ ω. We shall build an operator Stateω which concentrates

the bulk of amplitude on some superposition of the corresponding eigenvectors:
l

∑

j=1
λjΦ

ω
j ∈ Eω.

For this aim we are going to apply GSA. Let |ā〉 be some randomly chosen vector from the

main space: |ā〉 =
l

∑

j=1
µjΦ

ω
j +

∑

s
νsΦs where all eigenvectors from the second sum correspond to

frequencies ω′ 6≈ ω. Here our target state will be the following vector Eω(ā) =
l

∑

j=1
λjΦ

ω
j where

λj = µj
√

l
∑

j=1

|µj |2
, that is a vector of the length 1 directed along the projection of ā to subspace

Eω.
Let A be some set of vectors. We denote by IA an operator changing the sign of all vectors

from A and remaining unchanged all vectors orthogonal to A. We need to obtain the operator
IEω

constrained to the two dimensional subspace S(ā, ω) spanned by vectors |ā〉 and Eω(ā).
Let Revj, Restj be j-th copies of the operators Rev, Rest acting on the corresponding places

of j-th register. Denote by lj a string contained in the place for frequency of j-th register. Put

ĨEω
=

v
⊗

j

Restj Signω

v
⊗

j

Revj

then Signω changes a sign if and only if for at least 1/2 of all j |(0.lj)p − (0.ω̃L)p| ≤ 1/L. 5

Applying reasoning from the end of section 2.1 we conclude that the actions of IEω
and ĨEω

restricted on S(a, ω) will differ on less than 1
2O(v) and thus this different can be done very small

by only linear growth of memory. We thus will omit˜in our notations.
We define

St = GenArg−1GenTimeArg−1(IāIEω
)tGenTimeArg GenArg

where GenArg and GenTimeArg generate a pair ā, [C] and a time instant t correspondingly
where C is a gate array implementing Iā. Here the actions of Iā are implemented by the

5We could choose any fixed ρ : 1

8
< ρ < 7

8
instead of 1/2. Really, so defined ĨEω

will change the sign of all
ā ∈ Eω . If ā⊥Eω then the probability to obtain ω observing the frequency from Rev is less than 1

8
.
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universal function of application App. Then the result ξ = St|0̄〉 of its action on 0̄ will be
closed to Eω(ā). Really, |〈Eω(ā)|ξ〉| = | sin(2t arcsin〈ā|Eω(ā)〉)| (look at [BBHT]). An average
value of |〈ā|Eω(ā)〉| with the uniformly distributed probability of choice ā and t over all space
and time frame [0, B] correspondingly will be of order 1/

√
N . Thus if t is chosen randomly from

the uniform distribution over 1, 2, . . . , B then |〈Eω(ā)|ξ〉|2 will have average value not less than
1/4. Of course it would be much more convenient to obtain Eω(ā) with the error probability
converging to zero that is possible by the method described in section 2.1. Namely, arrange h
equal registers for the states χk, k = 1, 2, . . . , h in the main space, the corresponding h registers
for frequencies and associate the variable tk with each k-th register. Let Stk be a pattern of St
operator acting on k-th register. Remind that operators GenArgk and GenTimeArgk generate
independent distributions for different k = 1, 2, . . . , h. Now we define

Stateω = St1

⊗

St2

⊗

. . .
⊗

Sth. (2)

So defined operator being applied to zero initial state gives a state χ1
⊗

χ2
⊗

. . .
⊗

χh where
an average value of |〈Eω(χk)|χk〉|2 will be closed to some number not less than 1/4 with the
vanishing probability of error. By the way it means that if we then apply to this state the
corresponding operators revealing frequencies: Rev1

⊗

Rev2
⊗

. . .
⊗

Revh then in the resulting
state χ the majority of amplitude will be concentrated on such basic states for which at least
5
32

of all registers for frequencies contain numbers l for which |(0.l)m − (0.ω̃L)p| < 1/L. 6. On
the other hand, if ω is not a frequency at all then the probability to obtain such basic state will
be vanishing in view of independence of distributions generated by GenTimeArgk and GenArgk

for the different k.
The time complexity of this algorithm is of order M

√
N · n2. The last multiplier arises

due to the copying of registers. Thus we have a solution of the first problem of recognition of
eigenvalues.

3.2 Finding thermodynamic functions

Let we are given a structure of molecule of a gas. The problem is to find its thermodynamic
function (1). In view of that a summand in this sum quickly converges to zero it is sufficient
to find few first summands. Thus it is sufficient to be able to find degree of degeneracy of the
subspace corresponding to frequencies ω′ ≈ ω for any ω = l/M . Let E0 < E1 < . . . < Es be
energy levels of a molecule or eigenvalues of its Hamiltonian H . Then the operator of evolution
in time frame t will be U = e−

iH
h

t. An addition of a diagonal matrix r · I with constant r to
a Hamiltonian does not change the physical picture. Then choosing r = −Es, t = h

2πEs
we

obtain a unitary operator U which frequencies belong to the segment [0, 1) and thus we reduce
the problem to the case we have already dealt with.

Assume that M is fixed and we must examine only few frequencies closed to 0. At first we
can recognize all numbers of the form l/M that are frequencies in within 1/L. Let ω be such
number. Show how we can find the degree of degeneracy d of the corresponding subspace. This
is the dimension of subspace Eω spanned by eigenvectors corresponding to frequencies ω′ ≈ ω.

6Note that in this criterion 5

32
could be replaced by any ρ : 0 < ρ < 1

4
· 7

8
= 7

32
.
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Our plan is the following. Build an operator IEω
of reflection along this subspace. Then using

a counting procedure built in the paper [BBHT] we evaluate the time required for turning of

arbitrary initial vector till this subspace. This time will be about
√

N
d

and thus we find d. Fix
some ε > 0 and show how to obtain the value of d in within εd.

Let operators GenTimeArga
j generate time instants tj from independent uniform distribu-

tions on the segment [0, [a]], where a is nonnegative number. For a from 1 to
√

N fulfil the
following loop of three steps:

1. Apply an operator

⊗

j

[

⊗

k

Revj,k

]

(IāIEω
)tjGenTimeArga

jGenArgj

2. Find the fidelity of result that is the number of all j for which at least 7
8
− ε of all k are

such that ωj,k ≈ ω. If the fidelity of this step is larger than on the previous, then proceed
the loop, if not then stop.

3. Replace a by 4a/3.

If by the point 2 we finish computation then the current value a is taken as the rough approx-
imation of d from above. We have 3a/4 ≤ d ≤ a. To find d more exactly divide the segment
[3a/4, a] to [1/ε] equal parts by points a0 < a1 < . . . < al and repeat the procedure from above
sequentially for all ai. Thus we shall determine d in within g(ε)d where function g quickly con-
verges to zero with ε. Thus our algorithm finds d and thermodynamic functions with arbitrary
relative error in the time O(

√
N)M where the constant depends on admissible error. The more

refined algorithm can be obtained if we apply the method of counting from the work [BHT]. In
that work quantum Fourier transform is used analogously to Abrams and Lloyd operator Rev

only in order to find a time period of function G|ξ, t〉 = |Gtξ, t〉 that is about
√

N/d. Their

method gives the accuracy of order
√

d which means that the relative error converges to zero
if d −→ ∞.

3.3 Recognition of molecular structures

Now take up a problem of recognition of molecular structures. Here we are given a spectrum
of molecule and a problem is to recognize its construction. Note that now we have not access
to a device but it is sufficient to find an arbitrary device generating this spectrum. Clarify
the formulation assuming the following form of determining spectrum. Let we are given a set
w̄ = {w1, . . . , wQ} of numbers from [0, 1) of the form wi = li

M
each where li ∈ {0, 1, . . . , M −1}.

Denote by F a subspace spanned by vectors of the form |li〉, i = 1, . . . Q. A spectrum S is
determined by this set w̄ if

a) for each ω ∈ S there exists its good approximation wi ∈ w̄: |wi − ω| ≤ 1
L

and

b) each wi ∈ w̄ is a good approximation of some ω ∈ S.

12



We would obtain a little different formulations of the problem if we want to find a circuit whose
spectrum only contains one given set of frequencies and/or does not contain some other set, or
permit some more general form of sparse set for w̄ instead of li

M
. These versions of the problem

at hand have similar solutions.
As above we shall find a recognizing algorithm in GSA form

(I0̃Icir, w̄)t (3)

where 0̃ is arbitrarily chosen vector from the space spanned by codes of circuits, t = O(
√

T )
where T is a number of all possible circuits, and Icir,w̄ is reflection along all such codes [C] that
Spectr(UC) is determined by w̄. Now it is sufficient to build Icir, w̄.

Choose Bf = O(
√

Q) so that a randomly chosen vector w ∈ F satisfies |〈w|w1〉| > 1/Bf

with probability 0.99. Let GenFreqj , GenTimeFreqj be operators generating correspondingly:
a linear combination of frequencies ω̃j ∈ F and time instant tfreq, j ≤ Bf - all these objects
from the corresponding uniform distributions over all possible values, and a code of gate array
generating inversion along the corresponding state ω̃j. These operators will generate the objects
in the corresponding ancillary registers. Denote by ωj a frequency contained in the j-th register
(that is initially ω̃j).

Assume that a code of circuit generating U is fixed. Define an operator Icir, w̄ by

Icir, w̄ =
⊗

j

[

GenFreq−1
j GenTimeFreq−1

j (IBadFreq, w̄,jIω̃j
)tfreq, j

]

SignGoodFreq

⊗

j

[

(Iω̃j
IBadFreq, w̄,j)

tfreq, jGenFreqjGenTimeFreqj

]

.

where IBadFreq, ω̄,j will invert a sign of states with ”bad frequencies” in j-th register that are
such values of ωj of the form l

M
, l ∈ {0, 1, . . . , M − 1} which either belong to w̄ and are not a

good approximation of frequencies ω ∈ Spectr(V ) or do not belong to w̄ but have a closed ω ∈
Spectr(V ): |ωj − ω| ≤ 1

L
; for all other frequencies this operator acts like identity. Application

of the sequence preceding SignGoodFreq concentrates amplitude on ”bad frequencies”. Note
that Iω̃j

can be implemented by a given code by means of quantum Klini operator App. The
following application of SignGoodFreq inverts a sign of state subject to are there bad frequencies
or not. Namely, for codes [C] without bad frequencies SignGoodFreq changes the sign, for codes
[C] with bad frequencies it makes nothing. The following operators clean all ancilla. Thus so
defined Icir, w̄ will invert a sign of exactly those codes C for which Spectr(UC) is determined by
w̄. We need to define two types of operators: SignGoodFreq and IBadFreq, w̄,j.

Associate with each ωj contained in j-th register the family of registers enumerated by two
indices j, k and containing frequencies ωj,k.

Definition 3. Call a family of all ωj,k good if for at least 1/5 from all j the following
property takes place: for at least 1/10 of all k ωj,k ≈ ωj ∈ w̄.

Registers enumerated by different k for a fixed j are designed for the application of j-th
copy of operator Stateω defined in the previous section. Here it has the form Stateωj . Each k
corresponds to the operator Stk from the definition (2) so that each ωj,k will be a frequency
obtained from the result of Stk action.

13



At first build an operator IBadFreq,w̄,j. Put

IBadFreq,w̄,j =
⊗

j,k

[

(Stateωj )−1Restj,k

]

Sign′ ⊗

j,k

[Revj,kStateωj ]

where an operator Sign′ will change a sign of only states with bad families of frequencies.
If a frequency ωj is bad then in the previous section it was shown that only for vanishing part

of all k we can have ωj,k ≈ ωj ∈ w̄ and before Sign′ almost all probability will be concentrated
on bad families ωj,k, hence IBadFreq,w̄,j changes the sign.

If ωj is good then it belongs to w̄ and has a closed ω′ ∈ S. By the previous section for
about 7

8
· 1

4
= 7

32
> 1

5
of all k will be ωj,k ≈ ω ∈ w̄ and before Sign′ almost all probability will

be concentrated on good families, hence the sign will not be changed.
Thus IBadFreq,w̄,j is defined correctly.
Put

SignGoodFreq =
⊗

j,k

[

(Stateωj)−1Restj,k

]

Sign
⊗

j,k

[Revj,kStateωj ]

where an operator Sign changes a sign only for states with good families of frequencies. If a
frequency ωj is not bad then for about 1

4
· 7

8
= 7

32
of all k will be ωj,k ≈ ωj ∈ w̄. If a frequency

ωj is bad then we can obtain ωj,k ≈ ωj ∈ w̄ only for the vanishing part of k as it was shown in
the previous section. Thus SignGoodFreq acts how it is needed7.

Now calculate the complexity of our algorithm recognizing molecular circuit. The first
multiplier

√
T issues immediately from (3). The following multiplier as

√
Q issues from the

immediate definition of Icir, w̄. At last the definition of IBadFreq, w̄ brings the multiplier M
√

N .
The resulting complexity will be of order M

√
TNQn2.

3.4 Distinguishing of eigenvectors of two operators with the same

eigenvalue

Now we are going to take up the most difficult of our problems - a problem of recognition of
electronic devices. The difficulty is that here we need not to find a circuit with given spectrum
but to simulate an action of given circuit. Remind that now we assume that frequencies can
be determined in within 1/L given their approximation in within 1/M where L � M .

As a first step we consider the following question. Given two operators U and V having
the same eigenvalue ω how to find a difference between the corresponding eigenvectors? Let
LU

ω , LV
ω be the subspaces spanned by eigenvectors of U and V corresponding to all frequencies

ω′ ≈ ω. (A particular case is when ω is a frequency of U but not of V . Here LV
ω = ∅ and

our algorithm will work in this situation.) We shall omit the index ω in the notations. For
u ∈ LU , ‖u‖ = 1 put

µu = min{
√

1 − |〈u|v〉|2 | v ∈ LV , ‖v‖ = 1}.
7Again we could take arbitrary ρ1 : 0 < ρ1 < 1 instead of 1

10
and ρ2 : 0 < ρ2 < 7

32
instead of 1/5 in the

definition of a good family.
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that is the sine of angle between a vector u and the subspace LV or a distance between u and
this subspace, and analogously define µv for v ∈ LV , ‖v‖ = 1.

Put
µU = max

u∈U
µu, µV = max

v∈V
µv.

Then say µU = 0 means that U ⊆ V . If the dimension of spaces LU , LV are equal then µU = µV ,
if they are not equal, say dim LU > dim LV then µU = 1.

Let d = d(N) be some function taking values from (0, 1].
Call these subspaces d- distinguishable if some of µU , µV is not less than d, or some of the

subspaces is empty and another is nonempty.
We shall build a procedure that determines are these subspaces the same or not provided

they can be either d- distinguishable or coincident. The less the function d(N) is the more
accurate our recognition will be. Let LU ∩ LV = L0. Then LU = L0

⊕

L′
U and LV = L0

⊕

L′
V .

Note that if L′
U 6= ∅ then for all vectors from L′

U of the length 1 their distances from LV are
exactly µU and the same thing takes place with LV if L′

V is not empty. Let L′ be linear subspace
spanned by vectors from L′

V ∪L′
U . Denote by Proj AB a projection of subspace B to subspace A.

If dim LU > dim LV then we have the following expansion to the sum of orthogonal subspaces:
LU = L′′

U

⊕

Proj LU LV , where L′′
U is a subspace in LU consisting of vectors orthogonal to LV .

Let L′′
V be defined symmetrically.

Then either

• LU = LV or

• dim LU = dim LV and L′ 6= ∅, or

• dim LU > dim LV and L′′
U 6= ∅, or

• dim LU < dim LV and L′′
V 6= ∅.

We define the main operator determining the equality of LU and LV by

Difference = Differ−1 SignDif Differ,
Differ = Difsame dimDifLU>LV DifLU<LV Difort

LU>LV Difort
LU<LV

(4)

where SignDif changes a sign of main ancilla αdif iff at least one ancilla from the list ᾱ =
{αsame dim, αLU>LV , αLU<LV , αort

LU>LV , αort
LU<LV } contains 1, and each operator of the sort Dif

changes the corresponding ancilla from ᾱ in cases

• dim LU = dim LV and LU 6= LV ,

• dim LU > dim LV and µV <
√

2/3,

• dim LU < dim LV and µU <
√

2/3,

• dim LU > dim LV and µV >
√

1/3, or LV = ∅,
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• dim LU < dim LV and µU >
√

1/3, or LU = ∅

correspondingly and all of them do nothing if LU = LV . In view of symmetry it is sufficient
to define Dif operators in the first, second and fourth cases. Note that the first case dim LU =
dim LV is the only non-degenerate case and the definition of Dif here will be the most difficult.

Definition of Difsame dim.

Suppose that dim LU = dim LV . Our first aim now is to build an operator Inv which acts
as identity if LU and LV are coincident and acts like IL′ if they are d- distinguishable. Arrange
the first two ancillary qubits αU , αV which will signal that a state at hand has a projection at
least of the length 1/3 to LU or, correspondingly to LV . Consider the following operator

Check =
⊗

s

RestV
s AncV

⊗

s

RevV
s

⊗

s

RestU
s AncU

⊗

s

RevU
s

where Anc inverts the corresponding ancilla if and only if at least nine tenth of copies for the
respective frequencies are equal to ω in within 1/M . It coincides with the inverse operator
Check−1.

Let t be some random integer from the segment [0,
[

2
d

]

]. We define the following operator
of Grover’s type:

Turnt = (ILU ILV )t (5)

Call two subspaces LU and LV almost orthogonal iff for some µ ∈ {µU , µV }
√

1 − µ2 ≤ 1/30.
If LU and LV are not almost orthogonal then given some a ∈ L′

U (a ∈ L′
V ) an average distance

between Turnt|a〉 and LU (LV ) will be at least 1/2 if LU and LV are d- distinguishable and zero
if these subspaces are coincident. To tell apart close location and almost orthogonality build
two operators: Distort and Distclosed.

At first suppose that LU and LV are almost orthogonal. Then αU = 1 means that αV = 0.
Introduce a notation

L(αU , αV ) =

{

LV , if αU = 1,
LU , if αV = 1.

Let ā be a vector at hand from the space of inputs. Note that if LU 6= LV then for each ā⊥L′

we shall have αU = αV because such ā belongs to the subspace spanned by L0 and orthogonal
subspace to LU ∪ LV . The first operator Distort will do nothing if αU = αV and will change a
sign and a special ancilla αort if a projection of ā to L(αU , αV ) is less than 1/30.

The second operator Distclosed will act like identity if αU = αV and will change a sign
in case when the following conditions are satisfied simultaneously: ā ∈ L′, LU and LV are
distinguishable, αort = 0.

Put
Distort =

⊗

j

ResjSi6=ω

⊗

j

Rej

where Re (Res) denotes RevV (RestV ) if αU = 1, αV = 0, RevU (RestU) if αV = 1, αU = 0,
and identity if αU = αV ; Si 6=ω changes a sign inverting simultaneously αort iff at least a half
of frequencies ωj are such that |ωj − ω| > 1/M and αU 6= αV . If we want to clean the second
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ancilla after the action of Distort and remain change in sign then we can use an operator
Dist−ort =

⊗

j ResjS 6=ω
⊗

j Rej where S acts like Si only without changing a sign.
The second operator will be defined by the following equations

Distclosed = D−1
1 . . .D−1

n S ′DnDn−1 . . .D1,

Dj = (GenTimeArgj)
−1(Turnj

tj )
−1

[

⊗

k
RestU

j,k

]

Sigj
6=ω

[

⊗

k
RevU

j,k

]

Turnj
tjGenTimeArgj

j = 1, 2, . . . , n,

where operator Sigj
6=ω changes the corresponding ancilla βj only in one of the two cases:

1) αU = 1 and at least a half of ωj,k are such that |ωj,k − ω| ≥ 1/M , or

2) αU = 0, αV = 1 and at least a half of ωj,k are such that |ωj,k − ω| < 1/M .

An operator S ′ changes a sign iff some of αU , αV is nonzero and at least 1/20 of all βj contain
1.

Consider the action of Distclosed following to Check on an input vector ā. Let at first
LU 6= LV which means that they are distinguishable.

If ā⊥ LU , LV then αU = αV = 0 and Distclosed makes nothing.
If ā ∈ L0 then αU = αV = 1 and all Sigj

6=ω makes nothing because for almost all j about
3/4 of ωj,k are closed to ω: |ωj,k − ω| ≤ 1/M , hence S ′ and Distclosed do nothing.

Let ā ∈ L′. Prove that Distclosed changes a sign. Expand L′ to the sum of orthogonal
subspaces: L′ = L′

U

⊕

L′
U

ort. Denote the result of action of Turnj
tj on ā by āj .

If α ∈ L′
U then αU = 1, and for more than 1/10 of all āj revealed frequencies are not closed

to ω with probability about 3
4
· 9

10
, hence a sign will be changed by the point 1).

If ā ∈ L′
U

ort then by the same reason we obtain the change of sign by the point 2).Hence
Distclosed changes a sign for all ā ∈ L′.

Now we can define Inv:

Inv = Check Dist−ortDistclosedDistort Check.

For a⊥ LU , LV we have Inv|a〉 = |a〉 because Check gives zero in ancilla αU , αV thus depriv-
ing the following operators ability to change somehow a state vector. If a ∈ L0 then Inv|a〉 = |a〉
because Distort makes nothing and Distclosed makes nothing as well. Thus Inv|a〉 = |a〉 for ā⊥L′,
and Inv|a〉 = −|a〉 for a ∈ L′.

Now we are ready to build an operator Difsame dim inverting the ancilla αsame dim if and only
if LU and LV are distinguishable. Let Gen generate a list y, [Iy], [CZ ] where [CZ ] is a code of
circuit generating some unitary operator Z = Z−1 having only eigenvalues 1 and −1 that is its
frequencies are 0 and 1/2 and the space corresponding to frequency 0 is one dimensional where
y is its basic vector. As usually index j means that the corresponding vectors yj are taken from
the uniform distribution on all possible vectors. Assume that operators of the form Gen−1 are
accessible for us as well. Put

Difsame dim =
⊗

j

[

GenTimeArg−1
j Gen−1

j (Invj Iyj
)tjRest

Zj

j

]

Change

⊗

j

[

Rev
Zj

j (Iyj
Invj)

tjGenjGenTimeArgj

] (6)
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where each copy of Inv acts on the register where initially is placed yj , Change makes a desired
change in a resulting qubit αsame dim provided at least 5/32 of all frequencies differ from 0 in
more than 1/M .

The group (Iyj
Invj)

tj of GSA type turns essentially a vector yj generated by Genj if and
only if LU and LV are d- distinguishable.

If LU = LV then yj remains unchanged and at least 7/8 of all frequencies will be closed to
0.

If LU 6= LV then for the result of the turn of yj at least 7
8
· 1

4
= 7

32
of frequencies will be far

from 0 because they must be closed to 1/2. 8

Definition of DifLU>LV .

Suppose that dim LU > dim LV and µV <
√

2/3. Remind that here we have an expansion

to the sum of orthogonal subspaces LU = L′′
U

⊕

Proj LU LV where L′′
U 6= ∅. We shall define the

operator Dif by a very similar way as in previous case:

DifLU>LV =
⊗

j

[

GenTimeArg−1
j Gen−1

j (Inv′′
j,U Iyj

)tjRest
Zj

j

]

Change

⊗

j

[

Rev
Zj

j (Iyj
Inv′′

j,U)tjGenjGenTimeArgj

]

where the definition of Inv′′
U inverting L′′

U looks like Distort only L′′
U will play a role of L′:

Inv′′
U = Check

[

⊗

k

R̃es
V

k

]

S̃i6=ω

[

⊗

k

R̃e
V

k

]

Check.

Here R̃e
V

and R̃es
V

act like RevV and RestV only if αU = 1 and if αU = 0 then they do
nothing, S̃i 6=ω changes a sign only in one case: if αU = 1 and at least 3/4 of all frequencies ωk

are far from ω: |ωk − ω| ≥ 1/M . Thus in Dif operator we shall use a set of ancillary registers
enumerated by pairs of indices j, k.

For āj ∈ Proj LU LV in view of µV <
√

2/3 an operator S̃i6=ω does not change a sign because

here the fraction of all frequencies closed to ω is 7
8
· 1

3
= 7

24
> 1

4
.

For āj⊥Proj LU LV an operator Inv′′
U makes nothing.

Definition of Difort
LU>LV

Suppose that dim LU > dim LV and µV >
√

1/3. The definition of Dif will be similar to the
previous case only the whole subspace LU will play a role of L′:

Difort
LU>LV =

⊗

j

[

GenTimeArg−1
j Gen−1

j (Invj,U Iyj
)tjRest

Zj

j

]

Change

⊗

j

[

Rev
Zj

j (Iyj
Invj,U)tjGenjGenTimeArgj

]

where

InvU = Check

[

⊗

k

R̃es
V

k

]

S̃i
ort

6=ω

[

⊗

k

R̃e
V

k

]

Check.

8Thus we could take any number ρ : 1

8
< ρ < 7

32
instead of 5

32
in the definition of Change.
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Here S̃i
ort

6=ω changes a sign if more than a half of frequencies are far from ω: |ωj −ω| > 1/M . The
satisfying of the conditions required for Dif operator is based now on inequality 7

8
2
3

= 7
12

> 1
2

and can be checked straightforwardly.
At last estimate the complexity of constructed procedure. An operator Turn (5) requires

of order Turncomplexity = M
√

1/d elementary steps. Then, Difference (4) requires of order

Turncomplexity

√
N that is O(M

√

N/d) elementary steps. Note that there exists the similar form
of operator Difference which does not act on resulting qubit αdif but changes a sign instead and
such operator can be constructed similarly. Denote this operator by Differencesign. Assume
that an input of it contains a frequency ω.

3.5 Recognition of electronic devices circuits

Now we are ready to take up the recognition of circuits. We assume that for every pair of
circuits for their transformations U1, U2 subspaces spanned by corresponding eigenvalues are
either coincident or d- distinguishable. Assume also that our coding procedure gives one-
to-one correspondence between circuits and T basic states e0, e1, . . . , eT−1 in the space Hcir.
Recognizing procedure is denoted by Rec and will have the GSA form:

Rec = (I0̃IU)t, t = O(
√

T ) (7)

acting on states of the form |χ〉 where basic states for χ are codes of circuits. Here 0̃ ∈ Hcir is
chosen arbitrarily and IU inverts a sign of every code which circuit induces a given operator U .
An implementation of I0̃ is straightforward and all that we need is to build IU .

We define IU as

IU =
⊗

j

[

Conc−1
freq, jDifferencej

]

Sign
⊗

j

[DifferencejConcfreq, j]

where Concfreq for every basic state C of argument will generate some arbitrary distribution
of amplitude on ancillary register with Q basic states and then will concentrate substantial
part of amplitude on a frequency ω for which LU and LV are distinguishable (if such frequency
exists). Then operator Differencej changes resulting qubit for jth copy if and only if on this
frequency these subspaces are distinguishable. The following operator Sign changes a sign if
and only if at least one fifth of resulting qubits αdif contain 1, e.g. if and only if operators U
and UC are the same. Then the following applications of Differencej to each copy of register
clean the corresponding resulting qubits and inverses operators for Concj restore an initial state
of ancillary register. Difference was constructed in the previous section and all we need now is
to build Concfreq, j . This transformation can be defined as

Concfreq, j = GenTimeFreq−1
j GenFreq−1

j (DifferencesignIωj
)tj GenFreqj GenTimeFreqj (8)

If U and UC are different then by our assumption for some ω their subspaces LU and LV

are d-distinguishable then Concj will concentrate substantially large part of amplitude over all
j on some combination of such values ω. Thus we have constructed a required procedure Rec
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which gives a target code with substantial probability as a result of observation of the register
for code C. After the observation we can verify a fitness of a code found C by a straightforward
procedure. It is similar to IU with the single change: Sign will be replaced by change in a
special ancilla which can be observed after procedure and thus we shall learn does a code C at
hand fit or not.

What is the complexity of our procedure Rec? The complexity Mn2
√

N/d of Difference

must be multiplied by
√

Q issued from (8) and by
√

T issued from the immediate definition

(7). The resulting complexity will be Mn2
√

TQN/d.

3.6 Advantages of the recognizing algorithms

Advantages of the proposed algorithms are connected with their high speed and small memory.
Particularly, the algorithm for molecular structures recognition makes possible to recognize
molecular circuits using microscopic memory whereas classically this task requires exponentially
large memory. Compare the proposed algorithms with their classical counterparts. We shall
omit logarithmic multipliers.

1. Recognition of eigenvalues and finding thermodynamic functions. Fix some value of
M determining a precision of eigenvalue approximation. Consider at first the case when the
number of ancillary qubits in a quantum gate array at hand is small. Then by the direct
classical method we must build a matrix of unitary transform induced by a gate array. It
requires of order N3 steps and at least of order N2 bits. The known quantum algorithm
given by Travaglione and Milburn in [TM] basing plainly on Abrams and Lloyd operator Rev
contains repeated measurements of frequencies hence it requires the time of order NM - for
sparse spectrums it is of the same order as for Hams-Raedt algorithm and its only advantage
over the last is exponential memory saving.

Our algorithm recognizes an eigenvalue in
√

NMn steps. This time for the sparse area of
spectrum is about square root of the time of best known algorithms. Here the memory will
be of order g2 qubits (g is the size of gate array), that is about squared memory used in [AL]
but still exponentially smaller than of classical methods. Thus the proposed algorithm gives
essential speedup over known methods in case when the number of ancillary qubits in a given
gate array is small (as in case of molecular structure simulated by gate array) and an area of
spectrum at hand is sparse. The same advantage we have with the proposed method of finding
thermodynamic functions.

If spectrums are dense we assume that M = N which means that eigenvalues differ at least
on 1/N . Then the time of our algorithm is O(N).

Consider the case when the number a of ancillary qubits involved simultaneously in the gate
array is much more than the length n of input. Then the direct classical method requires more
than 22a steps and at least 2m bits whereas our algorithm requires only about g2n steps and
gn2 memory and the quantum speedup may be more than square root.

2. The recognition of molecular structures. At first assume that spectrums are sparse. To
be able to compare our method with the evident classical algorithm let us assume that a code of
molecular circuit of the length n is a string of ones and zeroes of this length. Thus M = N . The

20



next natural assumption that may be also presumed for electronic circuits is that the sampling
of a code of circuit from the uniform distribution induces a sampling of all possible spectrums
from the uniform distribution as well. Then the number of all possible choices of spectrums
approximations (or parts of spectrum subject to the statement of recognition problem) in within
1/L consisting of frequencies of the form l/M is about 2M = N . It means that in our assumption
M and Q must be logarithmic of N . Hence our method has the time complexity O(N). With
these assumptions the time complexity of the classical direct algorithm examining all codes and
calculating the corresponding spectrums is about N3 ·N = N4 whereas our algorithm requires
the time about N and logarithmic memory. Thus the quantum time for this problem is about
fourth root of the time of classical direct method and quantum space is logarithmic.

If spectrums are dense then Q and M will be of order N and our method requires the time
O(N2.5) comparatively with O(N4) of direct classical way.

3. Recognition of electronic devices. Here in the general case there are no classical analogs.
Compare two algorithm constructed above with their classical and known quantum counter-
parts. At first consider the single recognizing quantum algorithm that can be easily deduced
from the technique known before. This is an algorithm of recognizing a circuit realizing clas-
sical involutive function of the form f : Q −→ Q, f = f−1. This task can be reduced to
the search of y such that the following logic formula is true: ∀x A(x, y) where A(x, y) is some
predicate. Indeed, if we take Y (x) = U(x) in place of A(x, y) where Y is a function whose code
is y then we just obtain the problem of recognition of circuit generating U . An algorithm for
such formulas given in [BCW] has the time complexity of order

√
TN . This task is a particular

case of our algorithm for involutive devices and it has the same complexity. In this particular
case quantum time is of order square root of classical. But if we regard a bit more general
but still restricted problem of recognition of involutive devices producing linear combinations
of basic states (like quantum subroutines) an advantage over classical method of recognition
will be more. For example, consider the restricted problem when we must choose between
two alternative constructions of a tested device inducing not classical unitary transformation.
The naive method of observing the results of action of a tested device on the different inputs
requires of order 1

ε
N3 steps to restore the matrix of the operator UC in within ε. Then this ε

must be less than 1/
√

N to give vanishing difference between operators in Hilbert space. Hence
the time complexity of the naive method of recognition is roughly N7/2. On the other hand
the method proposed in the section 3.4 requires the choice of d only converging to zero with
N converging to infinity. Thus the time required by our method is a little more than

√
N . We

thus have almost seventh degree speedup for the problem of distinguishing electronic circuits
generating transformations with not classical matrices.

4 Conclusion

The main conclusion is that molecular structure and physical properties of environment can
be quickly recognized on the microscopic level whereas the classical methods require huge time
and especially memory. The new algorithms recognizing eigenvalues with fixed precision and
molecular structure, finding thermodynamic functions give a quadratic speedup comparatively
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with the best classical algorithms and exponential memory saving. The new method based on
quantum computing was proposed for fast recognition of electronic devices. By this method
two devices with the same given spectrum can be distinguished in the time about seventh root
of the time of direct measurements. All these algorithms show essential potential advantages of
microscopic sized quantum devices comparatively with their classical counterparts with much
bigger memory. The advantages touch intellectual tasks like recognition of the structure of
other devices and important properties of environment. The proposed algorithms are built of
standard known subroutines; they have simple structure and lay completely in the framework
of conventional paradigm of quantum computing.
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