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Recently proposed implementations of quantum computer suffer from

unavoidable interaction between quantum bits depending upon data being

written in them. Novel procedure of avoiding multiqubit errors arising due

to uncontrollable qubit-qubit interaction by using addititonal intermediate

qubits is proposed. It is shown that the scheme requires only polynomial

increase in number of qubits and algorithmic steps.

Since the pioneering works of Yu. Manin [1] and R. Feynman [2] there has been a tremen-

dous progress in quantum computation theory. P. Shor [3] and L. Grover [4] have discovered

fast quantum algorithms of great practical importance. One of the most important reasons

why the experimental realization of practically useful large scale quantum computer is not

attained until now is attitude of quantum computers (compared to classical ones) to various

types of errors. Hopefully there are known quantum error correction procedures [5–12] which

help to correct errors which occurred simultaneously in single quantum bit (qubit) or in few

qubits due to interaction with environment or imprecise implementation of local gates.

In 1998 J. Gea-Banacloche [13] revealed the significance of another source of errors:

internal interaction in quantum computer between neighbour qubits. The interaction serves

to entangle qubits if necessary, so it should be switched on every time while implementing

two-qubit gate and be switched off otherwise. But the accuracy of switcher amplitude could
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not be generally higher than several orders of magnitude. We should also control moments

of switching off/on with such accuracy. Therefore there is weak unavoidable interaction

between qubits any time. J. Gea-Banacloche [13] noted that even such a weak interaction

leads to errors which could completely destroy quantum computer performance in large scale

quantum registers. These errors differ from common few-qubit errors since they originate

from internal qubit-qubit interaction rather than from influence of noisy environment. They

conserve coherence of quantum computer but spreads over whole quantum register and make

initially unentangled blocks of qubits to entangle each other. In 1999 it was pointed out

by the same author [14] that common error correction methods do not solve the problem

since these procedures imply that the probability of whole quantum register to be entangled

due to errors during time of performing one of basic gates (I will denote this time as τ) is

negligible. In the subsequent discussion it is demonstrated how to avoid these errors if we

have managed to build scalable quantum computer.

As it was shown in [14] the interaction between neighbour qubits i and j frequently leads

to Hamiltonian which in the basis {|00〉 , |01〉 , |10〉 , |11〉} will have a matrix like the following

Hij =















a2 0 0 0

0 ab 0 0

0 0 ab 0

0 0 0 b2















. (1)

The inequality a 6= b results in nonadditive interaction energy. It is convenient to split

interaction Hamiltonian into additive HA and nonadditive parts HN , where

HA =















a2 0 0 0

0 a2+b2

2
0 0

0 0 a2+b2

2
0

0 0 0 b2















, (2)
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HN = h̄δω















0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0















(3)

where

δω =
(a − b)2

2h̄
. (4)

The dimensionless parameter δ (δ = τδω) can be used to evaluate entanglement during

one computing step. The action of HA does not entangle qubits. Moreover, by going to

an interaction picture with state |0〉 having additional energy a2/2 and state |1〉 having

additional energy b2/2 additive part can be effectively removed. The numerical value of

factor δω in HN depends on qubits being used. In some cases non-additive part can contain

also off-diagonal terms, whose influence on computation performance are similar to diagonal

terms [14]. The property of all such terms which is of importance for further discussion is

their decrease with the increase of distance between interacting qubits R according to:

δ = O
(

R−3
)

, at large R. (5)

This property results from dipole-dipole interaction energy scaling and it is valid if qubits

interact at large distances like dipoles or weaker. It is mostly the case. For qubits with

stronger entangling interaction such as proposed ones in recent paper [15] (among numerous

qubit proposals I did not find other examples of such kind), where it was proposed to choose

for |0〉 state the absense of electron in semiconductor quantum wire and to choose for |1〉 state

the presense of electron, Eq. (5) is not true if qubits interaction is not screened by electrodes

and direct implementation of technique given below does not help. But proposal of Ionicioiu

et al. [15] can be reduced to dipole case by doubling (i.e. by polynomial increase) number of

qubits. The reduction is implemented by encoding quantum information into pairs of qubits

instead of single ones

α |0〉 + β |1〉 7−→ α |01〉 + β |10〉
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to provide presense of qubit and its “antiqubit” in each qubits pair.

The degradation of computer perfornmance due to errors is characterized by probability

to get right outcome after measurement — quality factor Q:

Q =
∑

m∈S

|〈m|Ψ〉|2 (6)

where S is set of problem solutions, Ψ is wavefunction of quantum register before final

measurement. In abovementioned papers [13,14] it is shown that quality degrades as

Q ∝ exp
(

−σ2
)

(7)

where dispersion σ is given by

σ = CP
√

L δ. (8)

Here C is some constant whose exact value depends on algorithm being implemented and

input data (usually of order of unity [13,14]), P is number of algorithm steps, L is number

of qubits. The uncontrollable qubit-qubit interaction is usually weak, i.e. δ � 1, but the

numerical factor P
√

L is large. For example, to factor number of 1000 decimal digits (using

nowadays in RSA public key cryptography procedure) by implementing Shor algorithm [3] L

should be about 104 and P should exceed 5×106, therefore P
√

L would exceed 5×108. In this

evaluation we do not include any error correction procedures which will also increase with

both P and L in polynomial way. It should be also noted that at reasonable quantum register

sizes L (at L > 1 /δ2 ) computer strongly degrades during even single computational step.

It makes impossible application of any error correction procedures to improve computing

quality.

The scalability of quantum computer means that we can assemble as large uniform quan-

tum register as we need, but can not significantly change interaction between qubits. Al-

though obtained results can be easily generalized to two-dimensional and three-dimensional

layouts of qubits, to be more concrete we restrict our consideration to one-dimensional case

when all qubits are located along straight line forming one-dimensional grid with constant

distance r between neighbours.
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To avoid errors of interaction it is proposed to substitute logical ideal (non-interacting

when it is not needed) qubits by sets of interacting qubits in the following way. Each logical

qubit with number k and value ak |ak〉 is encoded by m real qubits

|ak〉 7−→ |ak

m−1
︷ ︸︸ ︷

00 . . . 0 〉. (9)

The logical quantum register |a1a2 . . . aL〉 is encoded then by mL real qubits as following:

|a1a2 . . . aL〉 7−→ |a1

m−1
︷ ︸︸ ︷

00 . . . 0 a2

m−1
︷ ︸︸ ︷

00 . . . 0 . . . aL

m−1
︷ ︸︸ ︷

00 . . . 0 〉. (10)

All one-qubit logical gates Vk are performed as usual

Vk 7−→ V(k−1)m+1 (11)

taking into account shift k 7−→ (k − 1)m + 1 of qubits numbers. Additionally in order to

avoid external errors all intermediate qubits in state |0〉 should be measured during each

computational step. As they are not entangled to others we can measure them without

disturbing quantum coherent state of register. Nontrivial logical two-qubit gate Wk,k+1

between neighbours is performed via sequence of basic swap operators Sn,n+1

Sn,n+1 |anan+1〉 = |an+1an〉

S(k−1)m+1,km =

m−1
︷ ︸︸ ︷

Skm−1,km Skm−2,km−1 . . . S(k−1)m+1,(k−1)m+2 (12)

and one nontrivial two-qubit gate Ukm,km+1.

Wk,k+1 7−→ S(k−1)m+1,km Ukm,km+1 S(k−1)m+1,km. (13)

So it is performed via 2m−1 basic gates. Since all qubits in state |0〉 are not in superposition

state, they are prohibited from interaction entanglement [13]. By introducing such procedure

interaction between neighbour qubits at distance r is effectively replaced by interaction

between qubits at distance mr. Two qubits in superpositon states approach each other only

during implementation two-qubit gates but in this case additional known entanglement is
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not errorneous and can lead only to slight (and known in advance) change of nontrivial

two-qubit gate.

Consider the influence of proposed procedure on quantum computer performance upon

parameter m.

Needed space resources L′ (number of qubits) are linear increased:

L′ = mL.

Time resources P ′ (number of basic gates) are also linear increased:

P ′ ≤ (2m − 1)P.

The equality is attained when only two-qubit gates are applied. The effective qubit-qubit

interaction constant is decreased according to Eq. [5]

δ′ ≤ δ
/

m3

Therefore dispersion of computation quality σ′ is polynomially improved

σ′ ≤ σm−3/2 (14)

So by polynomial (upon needed dispersion change) increase of parameter m computation

quality can be improved at any given qubit-qubit interaction. Finally, novel error avoiding

procedure is proposed. It allows to operate with qubits interacting each other by polynomial

increase of space and time resources.
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